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AbstractWe consider a multiclass multiplexer with support for multiple service classes, and dedicatedbu�ers for each service class. Under speci�c scheduling policies for sharing bandwidthamong these classes, we seek the asymptotic (as the bu�er size goes to in�nity) tail ofthe bu�er over
ow probability for each dedicated bu�er. We assume dependent arrivaland service processes as is usually the case in models of bursty tra�c. In the standardlarge deviations methodology, we provide a lower and a matching (up to �rst degree inthe exponent) upper bound on the bu�er over
ow probabilities. We introduce a noveloptimal control approach to address these problems. In particular, we relate the lower boundderivation to a deterministic optimal control problem, which we explicitly solve. Optimalstate trajectories of the control problem correspond to typical congestion scenarios. Weexplicitly and in detail characterize the most likely modes of over
ow. We specialize ourresults to the generalized processor sharing policy (GPS) and the generalized longest queue�rst policy (GLQF). The performance of strict priority policies is obtained as a corollary.We compare the GPS and GLQF policies and conclude that GLQF achieves smaller over
owprobabilities than GPS for all arrival and service processes for which our analysis holds. Ourresults have important implications for tra�c management of high-speed networks, and canbe used as a basis for an admission control mechanism which guarantees a di�erent lossprobability for each class.Keywords: Communication networks, ATM-based B-ISDN, Large Deviations.



1 IntroductionHigh speed, packet-switched communication networks, for example ATM-based B-ISDNnetworks, accommodate various types of tra�c (digitized voice, encoded video, and data)and o�er a variety of services. One of the central and most challenging current problems incomputer networking is the design and the operation of these networks.Congestion causes packet losses, due to bu�er over
ows, and excessive delays, phenom-ena that greatly contribute to the degradation of the quality of service (QoS) that thenetwork delivers to its users. Since voice and video are very sensitive to such phenomenathe network should have the ability to guarantee certain QoS parameters to the user. Wequantify QoS by the probability of bu�er over
ow. It is desirable to operate the networkin a regime where packet loss probabilities are very small, e.g., in the order of 10�9. Anessential step for preventing congestion through a variety of control mechanisms (bu�erdimensioning, admission control, resource allocation) is to determine how it occurs and toestimate the probabilities of congestion phenomena. The problem is particularly di�cultsince it essentially requires �nding the distributions of queue lengths in a multiclass net-work of G/G/1 queues with correlated arrival processes (since it is needed to model burstytra�c) and non-exponentially distributed service times. In this light, it is natural to focuson the large deviations regime and obtain asymptotic expressions for the tails of congestionprobabilities.In this paper we focus on a simpli�ed version of the problem which retains the mostsalient features, that is, it is multiclass and has correlated arrival and service processes.In particular, we consider a multiclass multiplexer (switch) which accommodates multipleservice classes. A service class is characterized by the statistical properties of the incomingtra�c and by the QoS requirements. Di�erent types of tra�c (i.e., voice, video, data,etc.) have di�erent statistical properties, and in addition they may have distinct QoSrequirements (e.g., video may need more stringent QoS requirements than voice), thus,they belong to di�erent service classes. Moreover, sessions of the same type of tra�c maybelong to di�erent service classes if they have di�erent QoS requirements (e.g., we canconsider a situation where we want to support both high and low quality video).Under speci�c scheduling policies for sharing bandwidth among service classes we seek,the asymptotic (as the bu�er size goes to in�nity) tail of the bu�er over
ow probabilitythat each class experiences. We focus on the generalized processor sharing policy (GPS)(introduced in [DKS90] and further explored in [PG93, PG94]), and the generalized longestqueue �rst policy (GLQF). The GLQF policy is a generalization of the longest queue �rstpolicy (LQF), under which the server allocates all of its capacity to the longest queue. Bothof these policies are parametric policies and for speci�c values of the parameters reduce to1



Sec. 1 Introduction 2strict priority policies. Thus, the performance of strict priority policies is obtained as acorollary of our results (approximate results for priority policies are reported in [EM95]).In the standard large deviations methodology, we provide a lower and a matching (upto �rst degree in the exponent) upper bound on the bu�er over
ow probabilities. Weprove that over
ows occur in one out of two most likely ways (modes of over
ow) and weexplicitly and in detail characterize these modes. We address the case of multiplexing twodi�erent tra�c streams. (The general case of N streams is more complicated since thereis an exponential explosion of the number of over
ow modes.) Our results have importantimplications in tra�c management of high-speed networks. They can be used as a basisfor an admission control mechanism which provides statistical QoS guarantees for eachservice class, and allows for di�erent QoS requirements for each class (see [Pas97] wherethis direction is pursued).We wish to note at this point that although our principal motivation for studying thisproblem is computer networking, our results have applications in other queueing situations,e.g., service industry and manufacturing systems.Large deviations techniques have been applied recently to a variety of problems incommunications (see [Wei95] for a survey). The problem of estimating tail probabilitiesof rare events in a single class queue has received extensive attention in the literature[Hui88, GH91, Kel91, KWC93, GW94, EM93, TGT95]. The extension of these ideas to sin-gle class networks, although much harder, has been treated in various versions and degreesof rigor in [BPT97a, GA96, Cha95, O'C95a, dVCW93].Closer to the subject of this paper, the asymptotic tails of the over
ow probabilities forthe GPS policy with deterministic service capacity are obtained in [dVK95] and [Zha97].Both papers use a large deviations result for the departure process from a G/D/1 queue[dVCW93]. Tail over
ow probabilities for the GPS policy and deterministic service capacitywere also reported in [O'C95b, CW95]. The authors in [CW95] view the problem as a controlproblem where control variables are the capacity that the server allocates to each bu�er, asa function of the current state. This approach has some technical problems with boundariesbecause it requires Lipschitz continuity of the controls.In [GGG+93] the authors suggest the use of the LQF policy in high speed networks anduse a deterministic model (only the rate of each incoming stream is known) to calculatebu�er sizes that guarantee no loss with probability one. Our analysis signi�cantly extendsthe scope of this work by generalizing the policy (GLQF) and by taking the statisticalproperties of the incoming tra�c into account. This leads to a more e�cient utilization ofthe network resources. Large deviations results for the LQF policy in an M/M/1 settingare also reported in [SW95].We consider the following to be some of the main contributions of the work in this paper:



Sec. 1 Introduction 3� The derivation of tight asymptotic expressions for the performance of multiclass mul-tiplexers operated under sophisticated (and of interest in practice) scheduling policiesfor sharing bandwidth among classes.� The introduction of an optimal control approach to address the problem. Our formu-lation is di�erent from the one in [CW95]. In particular, the exponent of the over
owprobability is the optimal value of the control problem, which we explicitly solve. Op-timal state-trajectories of the control problem correspond to the most likely modesof over
ow; from the solution of the control problem we obtain a detailed characteri-zation of these modes. This optimal control formulation is general enough to includeany scheduling policy; only the dynamics of the system are policy dependent. Opti-mal control formulations are also used in [SW95] for large deviations results for jumpMarkov processes.� The extension of some GPS results existing in the literature to the case of a stochasticservice capacity. This extension makes it possible to treat more complicated servicedisciplines. Consider for example the case where we have a deterministic server andthree classes with dedicated bu�ers. We give priority to the �rst class and use theGPS policy for the remaining two. These two remaining classes face a GPS server withstochastic capacity. Stochastic capacity signi�cantly alters the way over
ows occur.To see this, note that in deriving their results [dVK95] and [Zha97] use the departureprocess from a G/D/1 queue. The large deviations behaviour of the departure processis di�erent with deterministic and stochastic service capacity as it is pointed out in[BPT97a, CZ95].� The introduction of a new policy, the GLQF, which generalizes the LQF policy. Weprovide analytic performance analysis results for the GLQF policy and compare it tothe GPS policy. We argue that GLQF is preferable, at least in the absence of fairnessconsiderations.Regarding the structure of this paper, we begin in Section 2 with a brief review of thelarge deviations results that we will use. We also state a set of assumptions that arrival andservice processes need to conform to. In Section 3 we formally de�ne the multiclass modelthat we consider and in Subsections 3.1 and 3.2 we introduce the the GPS and the GLQFpolicy, respectively. Moreover, in Subsection 3.3 we provide an outline of the methodologythat we follow in proving our results. In Section 4 we establish lower bounds on the over
owprobability under the GLQF (Subsection 4.1) and the GPS policy (Subsection 4.2). Theoptimal control formulation is introduced in Section 5 and the results are specialized tothe GPS (Subsection 5.1) and the GLQF (Subsection 5.2) case. In Section 6 we describethe most likely modes of over
ow, under both policies, obtained from the solution of the



Sec. 2 Preliminaries 4corresponding control problems. In Section 7 we state the upper bound for the GPS policy(the proof is quite technical and involved and we omit it in the interest of space; we referthe interested reader to [BPT97b]). Section 8 contains the proof for the upper bound inthe GLQF case. We gather our main performance analysis results in Section 9, where wealso treat the special case of strict priority policies. Finally, we compare the two schedulingpolicies in Section 10. Conclusions are in Section 11.2 PreliminariesIn this section we review some basic results on the theory of large deviations [DZ93, SW95,Buc90] that will be used in the sequel.We �rst state the G�artner-Ellis Theorem [G�77, Ell84] (see also Bucklew [Buc90], andDembo and Zeitouni [DZ93]) which establishes a Large Deviations Principle (LDP) fordependent random variables in R. It is a generalization of Cram�er's theorem [Cra38] whichapplies to independent and identically distributed (i.i.d.) random variables.Consider a sequence fS1; S2; : : : g of random variables, with values in R and de�ne�n(�) 4= 1n logE[e�Sn ]: (1)For the applications that we have in mind, Sn is a partial sum process. Namely, Sn =Pni=1Xi, where Xi; i � 1, are identically distributed, possibly dependent random variables.Assumption A1. The limit �(�) 4= limn!1�n(�) = limn!1 1n logE[e�Sn ] (2)exists for all �, where �1 are allowed both as elements of the sequence �n(�) and aslimit points.2. The origin is in the interior of the domain D� 4= f� j �(�) <1g of �(�).3. �(�) is di�erentiable in the interior of D� and the derivative tends to in�nity as �approaches the boundary of D�.4. �(�) is lower semicontinuous, i.e., lim inf�n!� �(�n) � �(�), for all �.Theorem 2.1 (G�artner-Ellis) Under Assumption A, the following inequalities hold



Sec. 2 Preliminaries 5Upper Bound: For every closed set Flim supn!1 1n logP �Snn 2 F� � � infa2F ��(a): (3)Lower Bound: For every open set Glim infn!1 1n logP �Snn 2 G� � � infa2G��(a); (4)where ��(a) 4= sup� (�a� �(�)): (5)We say that fSng satis�es a LDP with good rate function ��(�). The term \good" refersto the fact that the level sets fa j ��(a) � kg are compact for all k < 1, which is aconsequence of Assumption A (see [DZ93] for a proof).It is important to note that �(�) and ��(�) are convex duals (Legendre transforms ofeach other). Namely, along with (5), it also holds�(�) = supa (�a� ��(a)): (6)The G�artner-Ellis Theorem intuitively asserts that for large enough n and for small� > 0, P[Sn 2 (na� n�; na+ n�)] � e�n��(a):A stronger concept than the LDP for the partial sum random variable Sn 2 R, is theLDP for the partial sum process (Sample path LDP)Sn(t) = 1n bntcXi=1 Xi; t 2 [0; 1]:Note that the random variable Sn =Pni=1Xi corresponds to the terminal value (at t = 1)of the process Sn(t); t 2 [0; 1]. In a key paper [DZ95], under certain mild mixing conditionson the stationary sequence fXi; i � 1g, Dembo and Zajic establish an LDP for the processSn(�) inD[[0; 1]; (R; jj�jj1)] (the space of right continuous functions with left limits equippedwith the supremum norm topology). Their result is a starting point for our analysis in thispaper. In particular, we will be assuming the following version of the sample path LDP.



Sec. 2 Preliminaries 6Assumption BFor all m 2 N, for every �1, for every �2 > 0 su�ciently small, and for every scalarsa0; : : : ; am�1, there exists M > 0 such that for all n �M and all k0; : : : ; km with 1 = k0 �k1 � � � � � km = n,exp(� n�2 + m�1Xi=0 (ki+1 � ki)��(ai)!) �P[jSki+1 � Ski � (ki+1 � ki)aij � �1n; i = 0; : : : ;m� 1] �exp( n�2 � m�1Xi=0 (ki+1 � ki)��(ai)!) : (7)A detailed discussion of this assumption, and the technical conditions under which it issatis�ed is given in [DZ95]. In the simpler case where dependencies are not present (i.e.,Si =Pij=1Xj , where Xi's are i.i.d.), Assumption B is a consequence of Mogulskii's theorem(see [DZ93]). Intuitively, Assumption B deals with the probability of sample paths that areconstrained to be within a tube around a \polygonal" path made up with linear segmentsof slopes a0; : : : ; am�1. In [DZ95] it is proved that this assumption is satis�ed by processesthat are commonly used in modeling the input tra�c to communication networks, that is,renewal processes, Markov modulated processes, and correlated stationary processes withmild mixing conditions.We will be also making the following related assumption.Assumption CFor all m 2 N there exists M > 0 and a function �(�) with 0 � �(y) < 1, for all y > 0,such that for all n �M and all k0; : : : ; km with 1 = k0 � k1 � � � � � km = n,E[e��Z ] � exp� mXj=1[(kj � kj�1)�(�j) + �(�j)]�; (8)where � = (�1; : : : ; �m) and Z = (Sk0 ; Sk2 � Sk1 ; : : : ; Skm � Skm�1).Chang [Cha95] provides a uniform bounding condition under which Assumption B is true,and veri�es that the condition is satis�ed by renewal, Markov-modulated, and stationaryprocesses with mild mixing conditions. Using his uniform bounding condition it can beveri�ed (see [Cha95] for a proof) that Assumption C is also satis�ed. This latter assumptioncan be viewed as the \convex dual analog" of Assumption B.On a notational remark, in the rest of the paper we will be denoting by SXi;j 4=Pjk=iXk;i � j, the partial sums of the random sequence fXi; i 2 Zg. We will be also denoting by�X(�) and ��X(�) the limiting log-moment generating function and the large deviations rate



Sec. 3 A Multiclass Model 7function (cf. Eqs. (2) and (5)), respectively, of the process X.3 A Multiclass ModelIn this section we introduce a multiclass multiplexer model that we plan to analyze, in thelarge deviations regime, under two speci�c scheduling policies for sharing bandwidth amongclasses: the generalized processor sharing policy (GPS) and the generalized longest queue�rst policy (GLQF) . The former policy is described in Subsection 3.1 and the latter one inSubsection 3.2. Subsection 3.3 provides an outline of the approach we follow.Consider the system depicted in Figure 1. We assume a slotted time model (i.e., discrete
Q2Q1

A2
A1 B

Figure 1: A multiclass model.time) and we let A1i (resp. A2i ), i 2 Z, denote the number of class 1 (resp. 2) customersthat enter queue Q1 (resp. Q2) at time i. Both queues have in�nite bu�ers and share thesame server which can process Bi customers during the time interval [i; i + 1]. We assumethat the processes fA1i ; i 2 Zg, fA2i ; i 2 Zg and fBi; i 2 Zg are stationary and mutuallyindependent. However, we allow dependencies between the number of customers at di�erentslots in each process. For stability purposes we assume that for all iE[Bi] > E[A1i ] +E[A2i ]: (9)We denote by L1i and L2i , the queue lengths at time i (without counting arrivals attime i) in queues Q1 and Q2, respectively. We assume that the server allocates its capacitybetween queues Q1 and Q2 according to a work-conserving policy (i.e., the server never staysidle when there is work in the system). We also assume that the queue length processesfLji ; j = 1; 2; i 2 Zg are stationary (under a work-conserving policy, the system reachessteady-state due to the stability condition (9) by assuming ergodicity for the arrival andservice processes).



Sec. 3.1 The GPS policy 8To simplify the analysis and avoid integrality issues we assume a discrete-time \
uid"model, meaning that we will be treating A1i , A2i and Bi as real numbers (the amount of 
uidentering or being served). This will not a�ect the results in the large deviations regime.Finally, we assume that the arrival and service processes satisfy a LDP (Assumption A),as well as Assumptions B and C. As we have noted in Section 2, these assumptions aresatis�ed by processes that are commonly used to model bursty tra�c in communication net-works, e.g., renewal processes, Markov-modulated processes, and more generally stationaryprocesses with mild mixing conditions.3.1 The GPS policyThe generalized processor sharing (GPS) policy was proposed in [DKS90] and further ex-plored in [PG93, PG94]. According to this policy the server allocates a fraction �1 2 [0; 1]of its capacity to queue Q1, and the remaining fraction �2 = 1 � �1 to queue Q2. Thepolicy is de�ned to be work-conserving, which implies that one of the queues, say queueQ1, may get more than a fraction �1 of the server's capacity during times that the otherqueue, Q2, is empty. This policy is also known as fair queueing, because it guarantees acertain fraction of the available bandwidth to each class, and thus, avoids situations thatoccur under FCFS where a bursty class can take the lion's share of the bandwidth.More formally, we can de�ne the GPS to be the policy that satis�es (work-conservation)L1i+1 + L2i+1 = [L1i + L2i +A1i +A2i �Bi]+;and Lji+1 � [Lji +Aji � �jBi]+; j = 1; 2;where [x]+ 4= maxfx; 0g.3.2 The GLQF policyFigure 2 depicts the operation of the generalized longest queue �rst policy (GLQF) policyin the L1 � L2 space. Fix the parameter of the policy � � 0. There is a threshold line, ofslope �, which divides the positive orthant of the L1�L2 space in two regions. The GLQFpolicy serves class 2 customers above the threshold line and class 1 below it. The value� = 1 corresponds to the longest queue �rst (LQF) policy. Intuitively, the GLQF policytries to maintain a desirable ratio � of the queue lengths per class by attending to the classthat overshoots this ratio. Since delays are due to long queues, it is also intuitive that theGLQF policy tries to balance (with a � \bias") the delay of the two classes.More formally, we de�ne the GLQF policy to be the work-conserving policy that at each



Sec. 3.3 An outline of our approach 9time slot i serves class 1 customers whenL2i < �L1i and L2i +A2i � �(L1i +A1i �Bi):It serves class 2 customers whenL2i > �L1i and L2i +A2i �Bi � �(L1i +A1i ):When L2i < �L1i and L2i +A2i > �(L1i +A1i �Bi);or when L2i > �L1i and L2i +A2i �Bi < �(L1i +A1i );then the GLQF policy allocates appropriate capacity to both classes of customers such thatL2i+1 = �L1i+1. Similarly, whenever L2i = �L1i , the GLQF policy allocates its capacity toclass 1 and 2 customers so that L2i+1 = �L1i+1, if possible.

L1
Serve 2
!

L2

tan! = � Serve 1
Figure 2: The operation of the GLQF policy.3.3 An outline of our approachWe are interested in estimating the steady-state over
ow probability P[L1i > U ] for largevalues of U , at an arbitrary time slot i, under both the GPS and the GLQF policy. Hav-



Sec. 4 A Lower Bound 10ing determined this, the over
ow probability of the second queue can be obtained by asymmetrical argument.We will prove that these over
ow probabilities satisfyP[L1i > U ] � e�U��GPS ; (10)and P[L1i > U ] � e�U��GLQF ; (11)asymptotically, as U !1.To this end, we will develop a lower bound on each over
ow probability, along with amatching upper bound. Fix the scheduling policy, and consider all scenarios (paths) thatlead to an over
ow. We will show that the probability of each such scenario ! asymptoticallybehaves as e�U�(!), for some function �(!). For every !, this probability is a lower boundon P[L1i > U ]. We select the tightest lower bound by performing the minimization ��GPS =min! �(!), in the GPS case, which amounts to solving a deterministic optimal controlproblem. Notice that both the function �(!) and the over
ow paths ! depend on thepolicy, hence this minimization will yield a di�erent optimal value in the GLQF case, whichwe will denote by ��GLQF . Optimal trajectories (paths) of the control problem correspondto most likely over
ow scenarios. We will show that these must be of one out of two possibletypes, in both the GPS and the GLQF case. In other words, with high probability, over
owoccurs in one out of two possible modes.To establish the tightness of the lower bounds and show Eqs. (10) and (11), we willobtain an upper bound on P[L1i > U ]. We will �rst obtain a sample path upper bound, i.e.,L1i � ~L1i (which implies P[L1i > U ] � P[ ~L1i > U ]) and then establish that P[ ~L1i > U ] is atmost e�U��GPS in the GPS case, and e�U��GLQF in the GLQF case.4 A Lower BoundIn this section we establish a lower bound on the over
ow probability P[L1i > U ], undereach one of the two scheduling policies. We �rst present the lower bound in the GLQF case,and then the one in the GPS case. The main idea is that we select the dominant over
owscenarios which are responsible for over
ows with high probability. The optimal controlformulation in Section 5 substantiates why the selected scenarios are the dominant ones.



Sec. 4.1 GLQF lower bound 114.1 GLQF lower boundProposition 4.1 (GLQF Lower Bound) Assuming that the arrival and service processessatisfy Assumptions A and B, and under the GLQF policy, the steady-state queue length,L1, of queue Q1, at an arbitrary time slot satis�eslimU!1 1U logP[L1 > U ] � ���GLQF ; (12)where ��GLQF is given by��GLQF = min� infa>0 1a�I�GLQF (a); infa>0 1a�II�GLQF (a)�; (13)and the functions �I�GLQF (�) and �II�GLQF (�) are de�ned as follows�I�GLQF (a) 4= infx1�x3=ax2��(x1�x3)[��A1(x1) + ��A2(x2) + ��B(x3)]; (14)and �II�GLQF (a) 4= infx1��x3=ax2�(1��)x3=�a0��<1 [��A1(x1) + ��A2(x2) + ��B(x3)]: (15)Proof : Let �n � 0 and a > 0. Fix x1; x2; x3 � 0, 0 � � < 1, and �1; �2; �3 > 0 andconsider the eventA 4= f jSA1�n;�i�1 � (n� i)x1j � �1n; jSA2�n;�i�1 � (n� i)x2j � �2n;jSB�n;�i�1 � (n� i)x3j � �3n; i = 0; 1; : : : ; n� 1g:Notice that x1; x2 (resp. x3) have the interpretation of empirical arrival (resp. service) ratesduring the interval [�n;�1]. We focus on two particular scenariosScenario 1: x1 � x3 = ax2 � �(x1 � x3) Scenario 2: x1 � �x3 = ax2 � (1� �)x3 = �a (16)



Sec. 4.1 GLQF lower bound 12Under Scenario 1, even if the server always serves class 1 customers 1 in [�n; 0] we havethat L10 � na� n�01, where �01 ! 0 as �1; �2; �3 ! 0.Consider now Scenario 2, and let us for the moment ignore �'s (i.e., �1 = �2 = �3 = 0).We will argue that L10 � na. If L2�n = �L1�n then both queues build up together, withthe relation L2 = �L1 holding in the interval [�n; 0]. According to the GLQF policy theserver arbitrarily allocates its capacity to the two queues, giving fraction � to Q1 and theremaining 1� � to Q2, yielding L10 = na+ L1�n � na. If L2�n > �L1�n then the �rst queuereceives less capacity than n�x3 in [�n; 0], resulting also in L10 � na. Finally, consider thecase L2�n < �L1�n. Then at some time �t 2 [�n; 0] we have L1�t = L1�n + (n� t)(x1 � x3)and L2�t = L2�n + (n � t)x2. Notice that x2 > �(x1 � x3), since otherwise, we have acontradiction, i.e., �a � x2 � �(x1 � x3) < �a:Thus, for large enough n, there exists some t, say t�, such that L2�t� = �L1�t� . Thisrelationship, along with L1�t� +L2�t� � (n� t�)(1+ �)a implies L1�t� � (n� t�)a. Now notethat from t� and on both queues build up together with the relation L2 = �L1 holding.Observing that L10 � L1�t� + t�a, we conclude that L10 � na.When we take the �'s into account a similar argument holds. With �1; �2; �3 > 0 andwith the same � there exists �02 > 0 such that the queue lengths are within an �02 band of thevalues in the previous paragraph, resulting in L10 � na�n�02, where �02 ! 0 as �1; �2; �3 ! 0.The probability of Scenario 1 is a lower bound on P[L10 � na]. Calculating the proba-bility of Scenario 1, maximizing over x1, x2 and x3, to obtain the tightest bound, and usingAssumption B we haveP[L10 � n(a� �01)] � supx1�x3=ax2��(x1�x3)P[ jSA1�n;�i�1 � (n� i)x1j � �1n; i = 0; 1; : : : ; n� 1]�P[ jSA2�n;�i�1 � (n� i)x2j � �2n; i = 0; 1; : : : ; n� 1]�P[ jSB�n;�i�1 � (n� i)x3j � �3n; i = 0; 1; : : : ; n� 1]� exp��n� infx1�x3=ax2��(x1�x3)[��A1(x1) + ��A2(x2) + ��B(x3)] + ���=expf�n(�I�GLQF (a) + �)g; (17)where n is large enough, and �01; �! 0 as �1; �2; �3 ! 0.1which is the case if we start from an empty system at time �n and the arrival and service rates areexactly x1; x2; x3, respectively. Then the second queue, since it receives zero capacity, builds up with ratex2, and its level always stays below �L1. This is a necessary condition for the �rst queue to be receiving allthe capacity.



Sec. 4.2 GPS lower Bound 13Similarly, calculating the probability of Scenario 2, we haveP[L10 � n(a� �02)] � supx1��x3=ax2�(1��)x3=�a0��<1 P[ jSA1�n;�i�1 � (n� i)x1j � �1n; i = 0; 1; : : : ; n� 1]�P[ jSA2�n;�i�1 � (n� i)x2j � �2n; i = 0; 1; : : : ; n� 1]�P[ jSB�n;�i�1 � (n� i)x3j � �3n; i = 0; 1; : : : ; n� 1]� exp��n� infx1��x3=ax2�(1��)x3=�a0��<1 [��A1(x1) + ��A2(x2) + ��B(x3)] + �0��=expf�n(�II�GLQF (a) + �0)g; (18)where n is large enough, and the �02; �0 ! 0 as �1; �2; �3 ! 0.Combining Eqs. (17) and (18) we obtain that for all �; �0 > 0 there exists N such thatfor all n > N 1n logP[L10 � n(a� �)] � �(min(�I�GLQF (a);�II�GLQF (a)) + �0): (19)As a �nal step to this proof, letting U = n(a� �), we obtain that for all �; �0 > 0 thereexists U0 such that for all U > U01U logP[L1 > U ] = 1n(a� �) logP[L10 � n(a��)] � � 1a� �(min(�I�GLQF (a);�II�GLQF (a))+�0);which implies limU!1 1U logP[L1 > U ] � �1a min(�I�GLQF (a);�II�GLQF (a)):Since a, in the above, is arbitrary we can select it in order to make the bound tighter.Namely, limU!1 1U logP[L1 > U ] � �min� infa>0 1a�I�GLQF (a); infa>0 1a�II�GLQF (a)�:
4.2 GPS lower BoundWe next turn our attention to the GPS policy and establish a lower bound on the over
owprobability. In the interest of space we provide an outline of the proof. The complete proof



Sec. 5 The optimal control problem 14can be found in [BPT97b].Proposition 4.2 (GPS Lower Bound) Assuming that the arrival and service processessatisfy Assumptions A and B, and under the GPS policy, the steady-state queue length L1of queue Q1 satis�es limU!1 1U logP[L1 > U ] � ���GPS; (20)where ��GPS is given by��GPS = min� infa>0 1a�I�GPS(a); infa>0 1a�II�GPS(a)�; (21)and the functions �I�GPS(�) and �II�GPS(�) are de�ned as follows�I�GPS(a) 4= infx1+x2�x3=ax2��2x3 [��A1(x1) + ��A2(x2) + ��B(x3)]; (22)and �II�GPS(a) 4= infx1��1x3=ax2��2x3 [��A1(x1) + ��A2(x2) + ��B(x3)]: (23)Proof (Outline) : Let �n � 0 and a > 0. Let also x1; x2; x3 � 0 be the empiricalarrival and service rates during the interval [�n;�1] (in the sense introduced in the proofof Proposition 4.1).We focus on two particular scenariosScenario 1: x1 + x2 � x3 = ax2 � �2x3 Scenario 2: x1 � �1x3 = ax2 � �2x3: (24)Under both scenarios it can be established that L10 � na. Calculating their probabilities weobtain a lower bound on P[L10 � na]. We then optimize over all the parameters involvedand use arguments similar to the ones in Proposition 4.1 to arrive at Eq. (20).5 The optimal control problemIn this section we introduce an optimal control problem for each of the two scheduling poli-cies and show that its optimal value provides the exponents ��GPS and ��GLQF , respectively,



Sec. 5 The optimal control problem 15of the over
ow probabilities. We will �rst motivate the control problem formulation and es-tablish some properties that are independent of the scheduling policy. We will subsequentlyspecialize the results to the GLQF and the GPS policy.To motivate the control problem, we relate it, heuristically, with the problem of obtainingan asymptotically tight estimate of the over
ow probability 2. For every over
ow samplepath, leading to L10 > U , there exists some time �n � 0 that both queues are empty. Sincewe are interested in the asymptotics as U !1, we scale time and the levels of the processesA1, A2 and B by U . We then let T = nU and de�ne the following continuous-time functionsin D[�T; 0] (these are right-continuous functions with left-limits):Lj(t) = 1U LjbUtc; j = 1; 2; SX(t) = 1U SX�UT;bUtc; X 2 fA1; A2; Bg; for t 2 [�T; 0]:Notice that the empirical rate of a process X is roughly equal to the rate of growth of SX(t).More formally, we will say that a process X has empirical rate x(t) in the interval [�T; 0]if for large U and small � > 0 it is true����SX(t)� Z t�T x(�) d� ���� < �; 8t 2 [�T; 0];where x(t) are arbitrary non-negative functions. We let, x1(t); x2(t) and x3(t) denote theempirical rates of the processes A1; A2 and B, respectively. The probability of sustainingrates x1(t); x2(t) and x3(t), in the interval [�UT; 0] for large values of U is given (up to �rstdegree in the exponent) byexp��U Z 0�T [��A1(x1(t)) + ��A2(x2(t)) + ��B(x3(t))] dt�:This cost functional is a consequence of Assumption B. With the scaling introduced here asU !1 the sequence of slopes a0; a1; : : : ; am�1 appearing there converges to the empiricalrate x(�) and the sum of rate functions appearing in the exponent converges to an integral.We seek a path with maximum probability, i.e., a minimum cost path where the costfunctional is given by the integral in the above expression. This optimization is subject tothe constraints L1(�T ) = L2(�T ) = 0 and L1(0) = 1. The 
uid levels in the two queuesL1(t) and L2(t) are the state variables and the empirical rates x1(t); x2(t) and x3(t) arethe control variables. The dynamics of the system depend on the state and the schedulingpolicy employed. According to the policy, we will distinguish a number of regions of systemdynamics. We do not yet specify the scheduling policy, we assume however that we employ2Such a relation can be rigorously established using the sample path LDP for the arrival and serviceprocesses, as it is de�ned in [DZ95] and [Cha95].



Sec. 5 The optimal control problem 16a scheduling policy with linear dynamics. More speci�cally, we consider M convex subsetsR1; : : : ;RM of the positive orthant such that[Mi=1Ri = f(L1; L2) j L1 � 0; L2 � 0g; Ri \Rj = ?; 8i 6= j:We �x constants 
1Rj ;i; 
2Rj ;i for j = 1; : : : ;M and i = 1; 2; 3, and consider the followingsystem dynamics:Region Rj: (L1(t); L2(t)) 2 Rj where_L1 = 
1Rj ;1x1(t)+
1Rj ;2x2(t)�
1Rj ;3x3(t); _L2 = 
2Rj ;1x1(t)+
2Rj ;2x2(t)�
2Rj ;3x3(t);_L1 + _L2 = x1(t) + x2(t)� x3(t):Dotted variables in the above expressions denote derivatives 3. Let (DYNAMICS) denotethe set of state trajectories Lj(t); j = 1; 2; t 2 [�T; 0], that obey the dynamics given above.Motivated by this discussion we now formally de�ne the following optimal control prob-lem (OVERFLOW). The control variables are xj(t); j = 1; 2; 3, and the state variables areLj(t); j = 1; 2; for t 2 [�T; 0], which obey the dynamics given in the previous paragraph.(OVERFLOW) minimizeZ 0�T [��A1(x1(t)) + ��A2(x2(t)) + ��B(x3(t))] dt (25)subject to: L1(�T ) = L2(�T ) = 0L1(0) = 1L2(0) : freeT : freefLj(t) : t 2 [�T; 0]; j = 1; 2g 2 (DYNAMICS):The �rst property of (OVERFLOW) that we show is that optimal control trajectoriescan be taken to be constant within each of the state dynamics regions.Lemma 5.1 Fix a time interval [�T1;�T2]. Consider a segment of a control trajectoryfx1(t); x2(t); x3(t); t 2 [�T1;�T2]g, achieving cost V , such that the corresponding statetrajectory fL1(t); L2(t); t 2 (�T1;�T2)g stays in one of the regions Rj. Then there existscalars �x1, �x2 and �x3 such that the segment of the control trajectory fx1(t) = �x1; x2(t) =3Here we use the notion of derivative for simplicity of the exposition. Note that these derivatives maynot exist everywhere. Thus, in Region Rj for example, the rigorous version of the statement _L1 + _L2 =x1(t) + x2(t) � x3(t) is L1(t2) + L2(t2) = L1(t1) + L2(t1) + R t2t1 (x1(t) + x2(t) � x3(t)) dt, for all intervals(t1; t2) that the system remains in Region Rj .



Sec. 5 The optimal control problem 17�x2; x3(t) = �x3; t 2 [�T1;�T2]g achieves cost at most V , with the same corresponding statesat t = �T1 and t = �T2.Proof : We will focus on one region of system dynamics, say Rj . Consider a segment ofany arbitrary control trajectory fx1(t); x2(t); x3(t); t 2 [�T1;�T2]g, that satis�es(L1(�T1); L2(�T1)) = (a1; a2) 2 Rj ; (L1(�T2); L2(�T2)) = (b1; b2) 2 Rj ; (26)and stays in Region Rj , i.e., (L1(t); L2(t)) 2 Rj for all t 2 (�T1;�T2), whereLk(t) = ak + Z t�T1 [
kRj ;1x1(�) + 
kRj ;2x2(�)� 
kRj ;3x3(�)] d�; k = 1; 2; t 2 (�T1;�T2):(27)Moreover, we also haveLk(�T2) = ak + Z �T2�T1 [
kRj ;1x1(�) + 
kRj ;2x2(�)� 
kRj ;3x3(�)] d� = bk; k = 1; 2: (28)We will prove that the time-average control trajectory�xi(�) = 1T1 � T2 Z �T2�T1 xi(t) dt; i = 1; 2; 3; 8� 2 [�T1;�T2]; (29)is no more costly. To this end, notice that the time-average trajectory, has the same endpoints (i.e., satis�es (26)), moves along a straight line and thus stays in Region Rj (byconvexity) for t 2 (�T1;�T2). Moreover, by convexity of the rate functions we haveZ �T2�T1 [��A1(x1(t)) + ��A2(x2(t)) + ��B(x3(t))] dt � (T1 � T2)[��A1(�x1) + ��A2(�x2) + ��B(�x3)]:
Given this property, to solve (OVERFLOW) it su�ces to restrict ourselves to statetrajectories with constant control variables in each of the regions Rj. A trajectory is calledoptimal if it achieves the lowest cost among all trajectories with the same initial and �nalstate. Since we have a free time problem, any segment of an optimal trajectory is alsooptimal for the problem of moving from the start state to the end state of the segment.Consider now a control trajectory fxLi (t); t 2 [�T; 0]g with corresponding state trajec-tory fL1(t); L2(t); t 2 [�T; 0]g, which leads to a �nal state (L1(0); L2(0)). De�ne a scaled



Sec. 5 The optimal control problem 18trajectory as xQi (t) = xLi (t=�); i = 1; 2; 3; t 2 [��T; 0];Qj(t) = �Lj(t=�); j = 1; 2; t 2 [��T; 0];and note that it leads to the �nal state (�L1(0); �L2(0)). Then, the cost of the Q trajectoryis given byZ 0��T [��A1(xQ1 (t)) + ��A2(xQ2 (t)) + ��B(xQ3 (t))] dt =� Z 0�T [��A1(xL1 (t)) + ��A2(xL2 (t)) + ��B(xL3 (t))] dt:Using this observation, it follows easily that every scaled version of an optimal trajectory isoptimal for the corresponding terminal state. For example, given this homogeneity propertywe can compare the state trajectories in Figure 3(a), (b) and (c). If the trajectory inFigure 3(a) is optimal, then so does the scaled version (by � = a2=a1) in Figure 3(b). As aconsequence, its segment which appears in Figure 3(c) is also optimal (since we have a freetime problem). L2

L1
L1
L1b1b1 a2a1

b1 a2a1
a1 a2

a2
a2

(a)
(b)

(c) a22a1
Figure 3: By the homogeneity property, optimality of the trajectory in (a) impliesoptimality of the trajectory in (b) which in turn implies optimality of the trajectoryin (c).



Sec. 5.1 The GPS optimal control problem 19In the rest of this section we will specialize the optimal control formulation to the GPSand the GLQF case, and use Lemma 5.1 along with the homogeneity property to obtain anoptimal solution.5.1 The GPS optimal control problemIn the case of the GPS policy we will distinguish three regions of system dynamics, depend-ing on which of the two queues is empty. In particular,Region R1: L1(t); L2(t) > 0, where according to the GPS policy_L1 = x1(t)� �1x3(t) and _L2 = x2(t)� �2x3(t);Region R2: L1(t) = 0; L2(t) > 0, where according to the GPS policy_L2 = x1(t) + x2(t)� x3(t);Region R3: L1(t) > 0; L2(t) = 0, where according to the GPS policy_L1 = x1(t) + x2(t)� x3(t):We let (GPS-DYNAMICS) denote the set of state trajectories Lj(t); j = 1; 2; t 2 [�T; 0],that obey these dynamics. We will denote by (GPS-OVERFLOW) the special case ofthe problem (OVERFLOW), where state trajectories are constrained to satisfy (GPS-DYNAMICS).The main result of this subsection is the following theorem.Theorem 5.2 The optimal value of the problem (GPS-OVERFLOW) is given by ��GPS, asit is de�ned in Equation (21).Due to space limitations we will skip the proof; we refer the interested reader to[BPT97b]. The proof uses Lemma 5.1 and the homogeneity property, and follows an elab-orate interchange argument to reduce any trajectory which is a potential candidate foroptimality to one of the two trajectories that appear in Figure 4.5.2 The GLQF optimal control problemWe next turn our attention to the GLQF policy. Depending on the state of the system, wedistinguish the following three regions of system dynamics:
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(a) (b)L11

L2
L11

L2
Figure 4: In searching for optimal state trajectories of (GPS-OVERFLOW), weonly need to consider trajectories of the form in (a) or (b).Region R1: L2(t) > �L1(t), where according to the GLQF policy_L1 = x1(t) and _L2 = x2(t)� x3(t);Region R2: L2(t) < �L1(t), where according to the GLQF policy_L1 = x1(t)� x3(t) and _L2 = x2(t);Region R3: L2(t) = �L1(t), where according to the GLQF policy_L1 + _L2 = x1(t) + x2(t)� x3(t)Let (GLQF-DYNAMICS) denote the set of state trajectories Lj(t); j = 1; 2; t 2 [�T; 0],that obey these dynamics. We will denote by (GLQF-OVERFLOW) the special case ofthe problem (OVERFLOW), where state trajectories are constrained to satisfy (GLQF-DYNAMICS).This problem exhibits both the properties of constant control trajectories (cf. Lemma5.1) within each region of system dynamics, and homogeneity. Using these properties, wecan make the reductions appearing in Figure 5(a), (b) and (c), starting from an arbitrarytrajectory with piecewise constant controls. More speci�cally, consider �rst an arbitrarytrajectory with linear pieces as the one in Figure 5(a). We apply Lemma 5.1 to its initialsegment (until it reaches L1 = �) and we obtain a no more costly segment which staysin Region R1 and is arbitrarily close to the threshold line L2 = �L1. By a continuityargument, we conclude that the initial segment of the trajectory in Figure 5(a) (until itreaches L1 = �) reduces to the corresponding segment of the trajectory in Figure 5(b).Using the same argument for the remaining segments of the trajectory in Figure 5(a), it



Sec. 5.2 The GLQF optimal control problem 21reduces to the one in Figure 5(b). We now apply the homogeneity property to the lattertrajectory to �nally obtain the trajectory in Figure 5(c). We conclude that optimal statetrajectories can be reduced to having one of the forms depicted in Figure 5(d), (e) and (f).L2
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Figure 5: By the property of constant controls within each region of systemdynamics the state trajectory in (b) is no more costly than the trajectory in (a).Also, by the homogeneity property, optimality of the state trajectory in (b) impliesoptimality of the trajectory in (c). Candidates for optimal state trajectories aredepicted in (d), (e) and (f). The trajectory in (f) is eliminated as less pro�tableto the one in (e). Hence, without loss of optimality we can restrict attention totrajectories of the form in (d) and (e).The optimal trajectory of the form shown in Figure 5(d) has value equal toinfT [T�I�GLQF ( 1T )] and the optimal trajectory of the form shown in Figure 5(e) has valueequal to infT [T�II�GLQF ( 1T )], where �I�GLQF (�) and �II�GLQF (�) are de�ned in Equations (14)and (15), respectively. Consider now the best trajectory of the form shown in Figure 5(f),which has value infT infx1= 1Tx2�x3�� 1T [��A1(x1) + ��A2(x2) + ��B(x3)]: (30)



Sec. 6 The Most Likely Paths 22The functions ��A2(x2) and ��B(x3) are non-negative, convex, and achieve their minimumvalue which is equal to 0 at x2 = E[A20] and x3 = E[B0], respectively. Moreover, due tothe stability condition (9) we have E[A20] � E[B0] < 0. Since 1T � 0 and in order to havex2 � x3 � � 1T , it has to be the case that either x2 > E[A20] or x3 < E[B0]. If the formeris the case, we can decrease x2 and reduce the cost, as long x2 � x3 � � 1T holds. Also, ifx3 < E[B0] is the case, we can increase x3 and reduce the cost, as long x2�x3 � � 1T holds.Thus, at optimality it is true that x2 � x3 = � 1T . Then, the expression in (30) is equal toinfT [T�II�GLQF ( 1T )] with � = 0 in the de�nition of �II�GLQF ( 1T ). Thus, since the calculation of�II�GLQF ( 1T ) involves optimization over �, we conclude that the state trajectory Figure 5(f)is no more pro�table than the one in Figure 5(e), leaving us with only the trajectoriesin Figure 5(d) and (e) as possible candidates for optimality. We summarize the abovediscussion in the following theorem.Theorem 5.3 The optimal value of the problem (GLQF-OVERFLOW) is given by ��GLQF .6 The Most Likely PathsIn essence, solving the control problem is equivalent to discovering scenarios of over
owthat maximize the over
ow probability over all feasible over
ow scenarios. In this sectionwe summarize these most likely ways of over
ow for both policies.6.1 The GPS most likely pathsThe two optimal state trajectories of (GPS-OVERFLOW)) are two generic most likely waysthat queue Q1 over
ows, under the GPS policy. In particular, we distinguish two cases:Case 1: Suppose ��GPS = infa �I�GPS(a)=a holds. Let a� > 0 the optimal solution of thisoptimization problem. In this case, the �rst queue is building up to an O(U) levelwhile the second queue stays at an o(U) level. The �rst queue builds up linearly withrate a�, during a period with duration U=a�. During this period the empirical ratesof the processes A1, A2 and B, are roughly equal to the optimal solution (x�1; x�2; x�3),respectively, of the optimization problem appearing in the de�nition of �I�GPS(a�) (Eq.(22)). The trajectory in L1-L2 space is depicted in Figure 4(a).Case 2: Suppose ��GPS = infa �II�GPS(a)=a holds. Let a� > 0 the optimal solution of thisoptimization problem. In this case, both queues are building up to an O(U) level.The �rst queue builds up linearly with rate a�, during a period with duration U=a�.During this period the empirical rates of the processes A1, A2 and B, are roughlyequal to the optimal solution (x�1; x�2; x�3), respectively, of the optimization problem



Sec. 6.2 The GLQF most likely paths 23appearing in the de�nition of �II�GPS(a�) (Eq. (23)). The trajectory in L1-L2 space isdepicted in Figure 4(b).It is interesting to re
ect at this point on the implications of this result on admissioncontrol for ATM multiplexers operating under the GPS policy. Consider the admissioncontrol mechanism for queue Q1 and suppose that the objective of this mechanism is tokeep the over
ow probability below a given desirable threshold. A worst-case analysis asin [PG93] would conclude that the admission control mechanism has to be designed withthe assumption that the second queue always uses a fraction �2 of the service capacity.If instead the results of this paper are used (assuming that a detailed statistical model ofthe input tra�c streams is available) a statistical multiplexing gain can be realized. In theover
ow mode described in Case 1 above, the second queue consumes less than the fraction�2 of the total service capacity, implying that more class 1 connections can be allowedwithout compromising the quality of service. Even if the over
ow mode described in Case2 above prevails, the over
ow probability is explicitly calculated (in an exponential scale)and can be taken into account in the design of the admission control mechanism.6.2 The GLQF most likely pathsConsidering now the GLQF policy, the two optimal state trajectories for the problem(GLQF-OVERFLOW) are most likely ways that queue Q1 over
ows. We distinguish twocases:Case 1: Suppose ��GLQF = infa �I�GLQF (a)=a holds. Let a� > 0 the optimal solution ofthis optimization problem. The �rst queue builds up linearly with rate a�, during aperiod with duration U=a�. During this period the empirical rates of the processesA1, A2 and B, are roughly equal to the optimal solution (x�1; x�2; x�3), respectively, ofthe optimization problem appearing in the de�nition of �I�GLQF (a�) (Eq. (14)). Inthis case the �rst queue is building up to an O(U) level while the second queue buildsup at a rate of x�2, in such a way that the server allocates its entire capacity to the�rst queue. The trajectory in L1-L2 space is depicted in Figure 5(d).Case 2: Suppose ��GLQF = infa �II�GLQF (a)=a holds. Let a� > 0 the optimal solution ofthis optimization problem. Again, the �rst queue builds up linearly with rate a�,during a period of duration U=a�, and with the empirical rates of the processes A1,A2 and B being roughly equal to the optimal solution (x�1; x�2; x�3), respectively, of theoptimization problem appearing in the de�nition of �II�GLQF (a�) (Eq. (15)). In thiscase both queues are building up, the �rst to an O(U) level and the second to anO(�U) level. The trajectory in L1-L2 space is depicted in Figure 5(e).



Sec. 7 A GPS Upper Bound 247 A GPS Upper BoundIn this section we present an upper bound on the probability P[L10 > U ], in the case ofthe GPS policy. In particular, we have established that as U ! 1 we have P[L10 > U ] �e���GPSU+o(U), where o(U) denotes functions with the property limU!1 o(U)U = 0. Theproof is quite involved and uses the special structure of the problem which was revealed bythe corresponding optimal control problem. Thus, the results in Section 5 are critical inestablishing the upper bound.Due to space limitations we omit the proof, which can be found in [BPT97b]. In provingthe upper bound we distinguished two cases:Case 1. E[A2] < �2E[B], andCase 2. E[A2] � �2E[B],and established an upper bound for each one of them. The main result is the followingproposition.Proposition 7.1 (GPS Upper Bound) Assuming that the arrival and service processessatisfy Assumptions A and C, and under the GPS policy, the steady-state queue length, L1,of queue Q1, at an arbitrary time slot satis�eslimU!1 1U logP[L1 > U ] � ���GPS: (31)8 A GLQF Upper BoundIn this section we develop an upper bound on the probabilityP[L10 > U ], for the GLQF case.In particular, we will prove that as U ! 1 we have P[L10 > U ] � e���GLQFU+o(U), whereo(U) denotes functions with the property limU!1 o(U)U = 0. This proof is di�erent fromthe corresponding one in the GPS case in that it is independent from the GLQF optimalcontrol formulation.Before we proceed into the proof of the upper bound, we derive an alternative expressionfor ��GLQF which will be essential in the proof. In the next theorem, we will show that thecalculation of ��GLQF is equivalent to �nding the maximum root of a convex function.In preparation for this result, consider a convex function f(u) with the property f(0) =0. We de�ne the largest root of f(u) to be the solution of the optimization problemsupu:f(u)<0 u. If f(�) has negative derivative at u = 0, there are two cases: either f(�)has a single positive root or it stays below the horizontal axis u = 0, for all u > 0. In thelatter, case we will say that f(�) has a root at u =1.



Sec. 8 A GLQF Upper Bound 25Lemma 8.1 For ��(�) and �(�) being convex duals, it holdsinfa>0 1a��(a) = ��;where �� is the largest root of the equation �(�) = 0.Proof : infa>0 1a��(a) = infa>0 sup� 1a [�a� �(�)]= infa0>0 sup� [� � a0�(�)]= sup�: �(�)<0 �:In the second equality above, we have made the substitution a0 := 1a and in the last one wehave used duality.On a notational remark, we will be denoting by �IGLQF (�) and �IIGLQF (�), the convexduals of �I�GLQF (�) and �II�GLQF (�), respectively. Notice, that the latter are convex functions.For �I�GLQF (a), convexity is implied by the fact that it is the value function of a convexoptimization problem with a appearing only in the right hand side of the constraints. For�II�GLQF (a), the same argument applies when we note the following reformulation�II�GLQF (a) = infx1��x3=ax2�(1��)x3=�a0��<1 [��A1(x1) + ��A2(x2) + ��B(x3)]= infx1�x03=ax2�(x3�x03)=�a0�x03�x3 [��A1(x1) + ��A2(x2) + ��B(x3)]:In preparation for the following theorem we prove the next monotonicity lemma.Lemma 8.2 (Monotonicity) Consider a random process fXi; i 2 Zg that satis�es As-sumption A. Assume Xi � 0; i 2 Z. Then for all � � �0 we have �X(�) � �X(�0).Proof : Xi � 0; i 2 Z, implies SX1;n � 0 which in turn impliesE[e�SX1;n ] � E[e�0SX1;n ];



Sec. 8 A GLQF Upper Bound 26for all � � �0.The above Lemma clearly applies to the arrival and service processes. The next resultis critical in establishing a matching upper bound on the over
ow probability.Theorem 8.3 ��GLQF is the largest positive root of the equation�GLQF (�) 4= max[�IGLQF (�);�IIGLQF (�)] = 0; (32)where �IGLQF (�) is the convex dual of �I�GLQF (�) and is given by�IGLQF (�) = infu�0[�A1(� � u�) + �A2(u) + �B(�� + u�)]; (33)and �IIGLQF (�) is the convex dual of �II�GLQF (�) and for � � 0 satis�es�IIGLQF (�) = infu�0[�A1(� � u�) + �A2(u) + max(�B(�u);�B(�� + u�))]: (34)Proof : Let us �rst calculate �IGLQF (�) and �IIGLQF (�) by using convex duality. We have�IGLQF (�) = supa [�a� �I�GLQF (a)]= supa supx1�x3=ax2��(x1�x3)[�a� ��A1(x1)� ��A2(x2)� ��B(x3)]= supa supx1�x3=ax2��(x1�x3)[�(x1 � x3)� ��A1(x1)� ��A2(x2)� ��B(x3)]= supx2��(x1�x3)[�(x1 � x3)� ��A1(x1)� ��A2(x2)� ��B(x3)]= infu�0 supx1;x2;x3[�(x1 � x3)� ��A1(x1)� ��A2(x2)� ��B(x3)� u(�x1 � �x3 � x2)]= infu�0[�A1(� � u�) + �A2(u) + �B(�� + u�)]:Similarly,�IIGLQF (�) = supa [�a� �II�GLQF (a)]= supa supx1��x3=ax2�(1��)x3=�(x1��x3)0��<1 [�a� ��A1(x1)� ��A2(x2)� ��B(x3)]



Sec. 8 A GLQF Upper Bound 27= infu supx1;x2;x30��<1 [�(x1 � �x3)� ��A1(x1)� ��A2(x2)� ��B(x3)+ u(x2 � �x1 + (��+ �� 1)x3)]= infu [�A1(� � u�) + �A2(u) + sup0��<1�B(���+ (��+ �� 1)u)]= infu [�A1(� � u�) + �A2(u) + max(�B(�u);�B(�� + u�))]= infu�0[�A1(� � u�) + �A2(u) + max(�B(�u);�B(�� + u�))]:In the �fth equality above, we have used the monotonicity of �B(�) (see Lemma 8.2), andthe fact that the argument ���+ (�� + � � 1)u is linear in �, thus, taking its maximumvalue at either � = 0 or � = 1. For the sixth equality above, notice that because �B(�) isnon-decreasing it holds�A1(� � u�) + �A2(u) + max(�B(�u);�B(�� + u�)) == 8<:�A1(� � u�) + �A2(u) + �B(�u) if u < �1+��A1(� � u�) + �A2(u) + �B(�� + u�) if u � �1+� , (35)since at the upper branch �u > �� + u� and at the lower branch �u � �� + u�. Di�er-entiating the above expression at u = 0, and for � � 0, we obtain�� _�A1(�)| {z }�0 + _�A2(0) � _�B(0)| {z }(9)� 0 � 0;which implies (by convexity) that the in�mum over unrestricted u has to be the same withthe in�mum over u � 0.Using the result of Lemma 8.1, �1 4= infa 1a�I�GLQF (a) is the largest positive root of�IGLQF (�) = 0 (it is not hard to verify that this equation has a positive, possibly, in�niteroot). Similarly, �2 4= infa 1a�II�GLQF (a) is the largest positive root of �IIGLQF (�) = 0. ByEquation (13), ��GLQF = min(�1; �2). This implies that ��GLQF is the largest positive rootof the equation max[�IGLQF (�);�IIGLQF (�)] = 0.We next prove the upper bound for the over
ow probability.Proposition 8.4 (GLQF Upper Bound) Under the GLQF policy, assuming that thearrival and service processes satisfy Assumptions A and C, the steady-state queue length,



Sec. 8 A GLQF Upper Bound 28L1, of queue Q1, at an arbitrary time slot satis�eslimU!1 1U logP[L1 > U ] � ���GLQF : (36)Proof : Without loss of generality we derive an upper bound for P[L10 > U ]. We willrestrict ourselves to sample paths with L10 > 0 since the remaining sample paths, withL10 = 0, do not contribute to the probability P[L10 > U ].Consider a busy period for the system that starts at some time�n < 0 (L1�n = L2�n = 0),and has not ended until time 0. Such a time �n exists due to the stability condition (9).Note that since the system is busy in the interval [�n; 0], the server works at capacity andtherefore serves Bi customers at slot i, for i 2 [�n; 0]. We will partition the set of samplepaths, with L10 > 0, in three subsets 
1;
2 and 
3. The �rst subset, 
1, contains all samplepaths at which only class 1 customers get serviced in the interval [�n; 0]. As a consequence,L1�k = SA1�n;�k�1 � SB�n;�k�1; L2�k = SA2�n;�k�1; and �L1�k � L2�k; 8k 2 [0; n];which implies L10 = SA1�n;�1 � SB�n;�1; and �(SA1�n;�1 � SB�n;�1) � SA2�n;�1:ThusP[L10 > U and 
1]�P[9n � 0 s.t. SA1�n;�1 � SB�n;�1 > U and �(SA1�n;�1 � SB�n;�1) � SA2�n;�1]=P[ maxfn�0: �(SA1�n;�1�SB�n;�1)�SA2�n;�1g(SA1�n;�1 � SB�n;�1) > U ]: (37)The second subset, 
2, contains sample paths at which class 1 customers do not receivethe entire capacity, and �L10 � L20. That is, there exists a � 2 [0; 1] such that class 1customers receive only a � fraction of the total capacity (�SB�n;�1). Then we haveP[L10 > U and 
2] �� P[9n � 0; 0 � � < 1; s.t. SA1�n;�1 � �SB�n;�1 > U and�(SA1�n;�1 � �SB�n;�1) � SA2�n;�1 � (1� �)SB�n;�1]= P[ maxfn�0; 0��<1: �(SA1�n;�1��SB�n;�1)�SA2�n;�1�(1��)SB�n;�1g(SA1�n;�1 � �SB�n;�1) > U ]: (38)Finally, the third subset, 
3 contains sample paths at which class 1 customers do notreceive the entire capacity, and �L10 � L20. Then there exists k 2 [0; n], such that the



Sec. 8 A GLQF Upper Bound 29interval [�k; 0] is the maximal interval that only class 1 customers get serviced. That is,�L1�i � L2�i; i 2 [0; k � 1], and �L1�k � L2�k. Since class 1 customers do not receive theentire capacity, there exists 0 � � < 1 such that L1�k = SA1�n;�k�1 � �SB�n;�k�1. Since�L1�k � L2�k, we have�(SA1�n;�k�1 � �SB�n;�k�1) � SA2�n;�k�1 � (1� �)SB�n;�k�1: (39)Now, due to the way we de�ned k we have L1�i = L1�k + SA1�k;�i�1� SB�k;�i�1, i 2 [0; k � 1],and the inequality �L1�i � L2�i becomes�(SA1�n;�k�1� �SB�n;�k�1+ SA1�k;�i�1� SB�k;�i�1) � SA2�n;�k�1� (1� �)SB�n;�k�1+ SA2�k;�i�1;which by (39) implies�(SA1�k;�i�1 � SB�k;�i�1) � SA2�k;�i�1; i 2 [0; k � 1]:Thus,P[L10 > U and 
3] �� P[9n � 0; 0 � k � n; 0 � � < 1; s.t. SA1�n;�k�1 � �SB�n;�k�1 + SA1�k;�1 � SB�k;�1 > Uand �(SA1�n;�k�1 � �SB�n;�k�1) � SA2�n;�k�1 � (1� �)SB�n;�k�1and �(SA1�k;�1 � SB�k;�1) � SA2�k;�1]� P[ maxn�0;0�k�n;0��<1�(SA1�n;�k�1��SB�n;�k�1)�SA2�n;�k�1�(1��)SB�n;�k�1�(SA1�k;�1�SB�k;�1)�SA2�k;�1(SA1�n;�k�1 � �SB�n;�k�1 + SA1�k;�1 � SB�k;�1) > U ]: (40)
Let us now de�neLIGLQF 4= maxfn�0: �(SA1�n;�1�SB�n;�1)�SA2�n;�1g(SA1�n;�1 � SB�n;�1);LIIGLQF 4= maxfn�0; 0��<1: �(SA1�n;�1��SB�n;�1)�SA2�n;�1�(1��)SB�n;�1g(SA1�n;�1 � �SB�n;�1);and LIIIGLQF 4= maxn�0;0�k�n;0��<1�(SA1�n;�k�1��SB�n;�k�1)�SA2�n;�k�1�(1��)SB�n;�k�1�(SA1�k;�1�SB�k;�1)�SA2�k;�1(SA1�n;�k�1 � �SB�n;�k�1 + SA1�k;�1 � SB�k;�1);



Sec. 8 A GLQF Upper Bound 30which after bringing the constraints in the objective function becomeLIGLQF 4= maxn�0 infu�0[(1 + u�)SA1�n;�1 � uSA2�n;�1 + (�1� �u)SB�n;�1]; (41)LIIGLQF 4= maxn�00��<1 infu�0[(1 � u�)SA1�n;�1 + uSA2�n;�1 + (��+ u��� u+ u�)SB�n;�1]; (42)andLIIIGLQF 4= maxn�00�k�n0��<1� infu1�0[(1 � u1�)SA1�n;�k�1 + u1SA2�n;�k�1 + (��+ u1��� u1 +u1�)SB�n;�k�1] + infu2�0[(1 + u2�)SA1�k;�1 � u2SA2�k;�1 + (�1� u2�)SB�k;�1]�: (43)Next, we will �rst upper bound the moment generating functions of LIGLQF , LIIGLQF andLIIIGLQF . For LIGLQF and for � � 0 we haveE[e�LIGLQF ]�Xn�0E[expf� infu�0[(1 + u�)SA1�n;�1 � uSA2�n;�1 + (�1� �u)SB�n;�1]g ]�Xn�0 infu�0E[expf�[(1 + u�)SA1�n;�1 � uSA2�n;�1 + (�1� �u)SB�n;�1]g ]�Xn�0 en(infu�0[�A1(�+�u�)+�A2 (�u�)+�B(���u��)]+�1)�KI(�; �1) if �IGLQF (�) < 0. (44)In the third inequality above we have used the LDP for the arrival and service processes.In the last inequality above, when the exponent is negative (that is, �IGLQF (�) < 0 and �1is su�ciently small), the in�nite geometric series converges to a constant KI(�; �1). Also,in the last inequality, we have made the substitution u := ��u in the expression in theexponent and used the de�nition of �IGLQF (�) (Eq. (33)).Similarly, for LIIGLQF and for � � 0 we haveE[e�LIIGLQF ]�Xn�0E[expf� max0��<1 infu�0[(1� u�)SA1�n;�1 + uSA2�n;�1 + (��+ u��� u+ u�)SB�n;�1]g ]�Xn�0 infu�0E[expf� max0��<1[(1� u�)SA1�n;�1 + uSA2�n;�1 + (��+ u��� u+ u�)SB�n;�1]g ]



Sec. 8 A GLQF Upper Bound 31�Xn�0 infu�0�en([�A1 (���u�)+�A2 (u�)+�B(��u)]+�02) + en([�A1 (���u�)+�A2 (u�)+�B(��+�u�)]+�002 )��2Xn�0 en(infu�0[�A1 (���u�)+�A2 (u�)+max(�B(��u);�B(��+�u�))]+�2)�KII(�; �2); if �IIGLQF (�) < 0. (45)In the third inequality above, the expression to be maximized over � is linear, thus, themaximum is achieved at either � = 0 or � = 1, which implies that we can upper bound itby the sum of the terms for � = 0 and � = 1.Also, for LIIIGLQF and for � � 0 we haveE[e�LIIIGLQF ]�Xn�0 X0�k�nE�exp�� max0��<1 infu1�0[(1� u1�)SA1�n;�k�1 + u1SA2�n;�k�1 + (��+ u1���u1 + u1�)SB�n;�k�1] + � infu2�0[(1 + u2�)SA1�k;�1 � u2SA2�k;�1 + (�1� u2�)SB�k;�1]� ��Xn�0 X0�k�n infu1;u2�0E�exp�� max0��<1[(1� u1�)SA1�n;�k�1 + u1SA2�n;�k�1 + (��+ u1���u1 + u1�)SB�n;�k�1] + �[(1 + u2�)SA1�k;�1 � u2SA2�k;�1 + (�1� u2�)SB�k;�1]� ��Xn�0 X0�k�n infu1;u2�0�e(n�k)(�A1 (���u1�)+�A2 (u1�)+�B(��u1)+�03) +e(n�k)(�A1 (���u1�)+�A2 (u1�)+�B(��+�u1�)+�003 )�ek(�A1 (�+�u2�)+�A2 (�u2�)+�B(����u2�)+�0003 )�2Xn�0 X0�k�n e(n�k)(�II (�)+�̂3)ek(�I (�)+�̂03)�2Xn�0nen(�II (�)+�̂3) + 2Xn�0nen(�I(�)+�̂03)�KIII(�; �3); if max(�IGLQF (�);�IIGLQF (�)) < 0. (46)In the third inequality above we have used the LDP for arrival and service processes, as wellas Assumption C. Concerning the maximization over �, we have used the same argumentas in Eq. (45). In the �fth inequality above, since the exponent is linear in k, the maximumover k is either at k = 0 or at k = n. Thus, we bound the term by the sum of the terms fork = 0 and k = n. Finally, for the last inequality, both series converge to a constant if boththeir exponents are negative, which requires max(�IGLQF (�);�IIGLQF (�)) < 0.To summarize (44), (45) and (46), the moment generating functions of LIGLQF , LIIGLQF



Sec. 9 Main Results 32and LIIIGLQF are upper bounded by some constantK(�; �1; �2; �3) if max(�IGLQF (�);�IIGLQF (�))< 0, where �1; �2; �3 > 0 are su�ciently small. We can now apply the Markov inequality toobtain (using Eqs. (37), (38) and (40))P[L10 > U ]�P[L10 > U and Case 1] +P[L10 > U and Case 2] +P[L10 > U and Case 3]��E[e��I (�)] +E[e��II(�)] +E[e��III(�)]�e��U�3K(�; �1; �2; �3)e��U if max(�IGLQF (�);�IIGLQF (�)) < 0:Taking the limit as U ! 1 and minimizing the upper bound with respect to � � 0, inorder to obtain the tightest bound, we havelimU!1 1U logP[L10 > U ] � � supf��0: max(�I(�);�II (�))<0g �:The right hand side of the above is equal to ���GLQF by Theorem 8.3.9 Main ResultsIn this section we gather our main results on the performance of multiclass multiplexers.9.1 The GPS main resultsWe �rst combine Propositions 4.2 and 7.1 and summarize our main results for the GPSpolicy. As a corollary we obtain results for priority policies.Theorem 9.1 (GPS Main) Under the GPS policy, assuming that the arrival and serviceprocesses satisfy Assumptions A, B, and C the steady-state queue length, L1, of queue Q1,at an arbitrary time slot satis�eslimU!1 1U logP[L1 > U ] = ���GPS; (47)where ��GPS is given by��GPS = min� infa>0 1a�I�GPS(a); infa>0 1a�II�GPS(a)�; (48)



Sec. 9.1 The GPS main results 33and the functions �I�GPS(�) and �II�GPS(�) are de�ned as follows�I�GPS(a) 4= infx1+x2�x3=ax2��2x3 [��A1(x1) + ��A2(x2) + ��B(x3)]; (49)and �II�GPS(a) 4= infx1��1x3=ax2��2x3 [��A1(x1) + ��A2(x2) + ��B(x3)]: (50)An interesting observation is that strict priority policies are a special case of the GPSpolicy. Class 1 customers have higher priority when �1 = 1 and lower priority when �1 = 0.We can therefore obtain the performance of these two priority policies as a by-product of ouranalysis. Note that the result for the policy that assigns higher priority to class 1 customers,matches the FCFS single class result (see [Kel91, GW94, BPT97a]) since under this policy,class 1 customers are oblivious of class 2 customers. We summarize the performance ofpriority policies in the next corollary. The discussion of Section 6.1 can be easily adaptedto the cases �1 = 1 and �1 = 0 to characterize the most likely ways that lead to over
owunder priority policies.Corollary 9.2 (Priority policies) Under strict priority policy for class 1 customers (P1),assuming that the arrival and service processes satisfy Assumptions A, B, and C the steady-state queue length, L1, of queue Q1, at an arbitrary time slot satis�eslimU!1 1U logP[L1 > U ] = ���P1; (51)where ��P1 is given by ��P1 = infa>0 1a��P1(a); (52)and where ��P1(a) 4= infx1�x3=a[��A1(x1) + ��B(x3)]: (53)Under strict priority policy for class 2 customers (P2), the steady-state queue length, L1, ofqueue Q1, at an arbitrary time slot satis�eslimU!1 1U logP[L1 > U ] = ���P2; (54)



Sec. 9.1 The GPS main results 34where ��P2 is given by ��P2 = infa>0 1a��P2(a); (55)and where ��P2(a) 4= infx1+x2�x3=ax2�x3 [��A1(x1) + ��A2(x2) + ��B(x3)]; (56)Proof : For policy P1 apply Theorem 9.1 with �1 = 1. For such �1, it is easy to verify that�I�GPS(a) � �II�GPS(a), for all a. Thus, we de�ne ��P1(a) to be equal to �II�GPS(a) with �1 setto 1.For policy P2 apply Theorem 9.1 with �1 = 0. Application of �1 = 0 to �I�GPS(a) yields�I�GPS(a) = infx1+x2�x3=ax2�x3 [��A1(x1) + ��A2(x2) + ��B(x3)]: (57)Also, application of �1 = 0 to �II�GPS(a) yields�II�GPS(a) = infx1=ax2�x3[��A1(x1) + ��A2(x2) + ��B(x3)]: (58)The functions ��A2(x2) and ��B(x3) are non-negative, convex, and achieve their minimumvalue, which is equal to 0, at x2 = E[A20] and x3 = E[B0], respectively. Since E[B0] > E[A20],the inequality x2 � x3 implies that either x2 > E[A20] or x3 < E[B0]. If the former is thecase, we can decrease x2 and reduce the cost, as long x2 � x3 holds. Also, if x3 < E[B0] isthe case, we can increase x3 and reduce the cost, as long x2 � x3 holds. Thus, at optimalityx2 = x3 in (58). But, the region characterized by x1 = a and x2 = x3 is included in theregion de�ned by the constraints in the optimization problem in (57). Hence, for all a,and when �1 = 0, �I�GPS(a) � �II�GPS(a). Therefore, we de�ne ��P2(a) to be equal to theexpression in (57).As the results of Theorem 9.1 and Corollary 9.2 indicate, the calculation of the over
owprobabilities involves the solution of an optimization problem. We will next show thatbecause of the special structure that these problems exhibit, this is equivalent to �ndingthe maximum root of a convex function. Such a task might be easier to perform in somecases, analytically or computationally. This equivalence relies mainly on Lemma 8.1. Hence,using duality, we express ��GPS as the largest root of a convex function. The result is givenin the next theorem, the proof of which is omitted due to space limitations; it can be found



Sec. 9.1 The GPS main results 35in [BPT97b].Theorem 9.3 ��GPS is the largest positive root of the equation�GPS(�) 4= �A1(�) + inf0�u��[�A2(� � u) + �B(�� + �2u)] = 0: (59)Remark : Equation (59) has a positive, possibly in�nite, root. To establish that, notice�rst that �GPS(�) is a convex function of �. This can be seen when we write it as the valuefunction of a convex optimization problem with � appearing only in the right hand side ofthe constraints, i.e.,�GPS(�) = �A1(�) + infz=�0�u��[�A2(z � u) + �B(�z + �2u)]:Observe now that �GPS(�) � �A1(�) + �A2(�) + �B(��);and that both sides of the above inequality are 0 at � = 0. This implies that their derivativesat � = 0 satisfy _�GPS(0) � _�A1(0) + _�A2(0) � _�B(0) < 0;where the last inequality follows from the stability condition (9). The convexity of �GPS(�)is su�cient to guarantee the existence of a positive, possible in�nite, root.Again, as it was the case with Theorem 9.1, the result of Theorem 9.3 can be specializedto the case of priority policies.Corollary 9.4 ��P1 is the largest positive root of the equation�P1(�) 4= �A1(�) + �B(��) = 0: (60)Also, ��P2 is the largest positive root of the equation�P2(�) 4= �A1(�) + inf0�u��[�A2(� � u) + �B(�� + u)] = 0: (61)We conclude this subsection noting that, by symmetry, all the results obtained here canbe easily adapted (it su�ces to substitute everywhere 1 := 2 and 2 := 1) to estimate theover
ow probability of the second queue and characterize the most likely ways that it buildsup.



Sec. 9.2 The GLQF main results 369.2 The GLQF main resultsCombining Propositions 4.1 and 8.4 we obtain the following main GLQF theorem. An exactcharacterization of the most likely ways that lead to over
ow was discussed in Section 6.2.Theorem 9.5 (GLQF Main) Under the GLQF policy, assuming that the arrival andservice processes satisfy Assumptions A, B, and C, the steady-state queue length, L1, ofqueue Q1, at an arbitrary time slot satis�eslimU!1 1U logP[L1 > U ] = ���GLQF ; (62)where ��GLQF is given by��GLQF = min� infa>0 1a�I�GLQF (a); infa>0 1a�II�GLQF (a)�; (63)and the functions �I�GLQF (�) and �II�GLQF (�) are de�ned as follows�I�GLQF (a) 4= infx1�x3=ax2��(x1�x3)[��A1(x1) + ��A2(x2) + ��B(x3)]; (64)and �II�GLQF (a) 4= infx1��x3=ax2�(1��)x3=�a0��<1 [��A1(x1) + ��A2(x2) + ��B(x3)]: (65)It should be noted that the performance of strict priority policies, which is characterizedby Corollary 9.2, can be also obtained as a corollary of the above theorem. We obtain theperformance of strict priority to class 2 (P2) when � = 0, and the performance of strictpriority to class 1 (P1) when � =1. It is not hard to verify that the result is identical toCorollary 9.2. The above Theorem indicates that the calculation of the over
ow probabilitiesinvolves the solution of a convex optimization problem. In Section 8, and for the purposesof proving Proposition 8.4, we proved in Theorem 8.3 that the exponent of the over
owprobability can also be obtained as the maximum root of a convex function. This may beeasier to do in some cases. Here, we restate this latter result, simplifying the expression for�GLQF (�).



Sec. 9.2 The GLQF main results 37Theorem 9.6 ��GLQF is the largest positive root of the equation�GLQF (�) = maxf�A1(�) + �B(��); inf0�u� �1+� [�A1(� � u�) + �A2(u) + �B(�u)]g = 0:(66)Proof : Due to Theorem 8.3 it su�ces to prove that the expression in (66) is equal tomax[�IGLQF (�);�IIGLQF (�)]. Recall the de�nitions of �IGLQF (�) in (33) and of �IIGLQF (�)in (34). Recall also the expression in (35) for the objective function of the optimizationproblem corresponding to �IIGLQF (�). Let now u� be the optimal solution of the optimizationproblem in the de�nition of �IIGLQF (�). We distinguish two cases:Case 1: where u� � �1+� . Then, notice that u� is also the minimizer of the objectivefunction in the de�nition of �IGLQF (�). Thus, due to convexity, the constraint u � 0is tight for the problem corresponding to �IGLQF (�), andmax(�IGLQF (�);�IIGLQF (�)) = �A1(�) + �B(��); if u� � �1+� : (67)But, inf0�u� �1+� [�A1(� � u�)+�A2(u) + �B(�u)]� [�A1(� � u�) + �A2(u) + �B(�u)]u= �1+�= [�A1( �1+� ) + �A2( �1+� ) + �B(� �1+� )]= [�A1(� � u�) + �A2(u) + �B(�� + u�)]u= �1+�� [�A1(� � u�) + �A2(u) + �B(�� + u�)]u=0= �A1(�) + �B(��):In the second inequality above we have used the assumption u� � �1+� and convexity.Therefore, combining it with (67) we obtainmax(�IGLQF (�);�IIGLQF (�)) = maxf�A1(�) + �B(��);inf0�u� �1+� [�A1(� � u�) + �A2(u) + �B(�u)] g = �GLQF (�) if u� � �1+� : (68)Case 2: where 0 � u� < �1+� . To conclude the proof we need to show that max(�IGLQF (�);�IIGLQF (�)) is not �IGLQF (�) when the optimal solution, of the optimization problem



Sec. 10 A Comparison 38appearing in the de�nition of �IGLQF (�), is some û < 0. Let us, indeed, assume thatthis optimal solution is some û < 0. Then, for all u 2 [0; �1+� ) (hence for u�) we have�IGLQF (�) = [�A1(� � û�) + �A2(û) + �B(�� + û�)]� [�A1(� � u�) + �A2(u) + �B(�� + u�)]� [�A1(� � u�) + �A2(u) + �B(�u)];where in the last inequality we have used the fact that u < �1+� which implies (seealso (35)) �B(�u) � �B(�� + u�).Therefore, for 0 � u� � �1+� also, we havemax(�IGLQF (�);�IIGLQF (�)) = maxf�A1(�) + �B(��);inf0�u� �1+� [�A1(� � u�) + �A2(u) + �B(�u)] g = �GLQF (�):
The results of this Theorem can be also specialized to the case of priority policies, toobtain the characterization of Corollary 9.4.We conclude this subsection, noting that, by symmetry, all the results obtained herecan be easily adapted (it su�ces to substitute everywhere 1 := 2, 2 := 1, and � = 1� ) toestimate the over
ow probability of the second queue and characterize the most likely waysthat it builds up.10 A ComparisonIn this section we compare the over
ow probabilities achieved by the GPS and the GLQFpolicy.Let � be an arbitrary work-conserving policy used to allocate the capacity of the serverto the two queues Q1 and Q2, and let � the set of all work-conserving policies �. Let L1and L2 denote the queue lengths of Q1 and Q2, respectively, at an arbitrary time slot, whenthe system operates under �. Let us now de�ne �� the vector (��1 ; ��2 ) where��1 = limU!1 1U logP[L1 > U ] and ��2 = limU!1 1U logP[L2 > U ]: (69)The GPS policy is a parametric policy with performance depending on the parameter �1.To make this dependence explicit we will be using the notation GPS(�1). Also, the GLQF



Sec. 10 A Comparison 39policy is a parametric policy with performance depending on the parameter �. For thesame reason we will be using the notation GLQF(�). Special cases of a work-conservingpolicy � are the GPS(�1) policy, the GLQF(�) policy, the strict priority to class 1 policy(P1 policy), and the strict priority to class 2 policy (P2 policy). Using Theorems 9.1, 9.5,and Corollary 9.2 one can readily obtain the corresponding �� for the policies GPS(�1),GLQF(�), P1 and P2.It is intuitively obvious that�P1 = (max�2� ��1 ;min�2� ��2 ) and �P2 = (min�2� ��1 ;max�2� ��2 ):In Figure 6 we plot �GPS(�1) as �1 varies in [0; 1], and �GLQF (�) as � varies in [0;1).For simplicity the calculations were performed with the arrival and service processes beingBernoulli (we say that a process fXi; i 2 Zg is Bernoulli with parameter p, denoted byX �Ber(p), when Xi are i.i.d. and Xi = 1 with probability p and Xi = 0 with probability1 � p). Also, for the calculations we used the expressions for ��GPS and ��GLQF given inTheorems 9.3 and 9.6, respectively, because they were more e�cient to perform numericallythan the equivalent expressions in Theorems 9.1 and Thm. 9.5. Note that �P1 = �GPS(1) =�GLQF (1) and that �P2 = �GPS(0) = �GLQF (0).Figure 6 indicates that the GLQF curve dominates the GPS curve, i.e., the GLQFpolicy achieves smaller over
ow probabilities than the GPS policy. The question that arisesis whether this depends on the particular distributions and parameters chosen in the �gureor is a general property. In the sequel we show that the latter is the case, that is, for allarrival and service processes that our analysis holds (processes satisfying Assumptions A,B, and C) the GLQF curve dominates the GPS curve. The intuition behind this result isthat the GLQF policy, which adaptively depends on the current queue lengths, allocatescapacity to the queue that builds up, thus, achieving smaller over
ow probabilities than theGPS policy which is static. This suggests than when one has to deal with delay insensitivetra�c (i.e., when there are no delay constraints) GLQF is more suitable than GPS.Let us �rst formally de�ne the term the GLQF curve dominates the GPS curve.De�nition 10.1We say that the GLQF curve dominates the GPS curve when there does not exist a pair of�1 2 [0; 1] and � 2 [0;1) satisfying �GPS(�1)1 > �GLQF (�)1 and �GPS(�1)2 > �GLQF (�)2 .In order to establish that the GLQF curve dominates the GPS curve, we need to provethe three lemmata that follow.
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Figure 6: The performance �GPS(�1) of the GPS(�1) policy as �1 varies in [0; 1],and the performance �GLQF (�) of the GLQF(�) policy as � varies in [0;1), whenA1 �Ber(0.3), A2 �Ber(0.2) and B �Ber(0.9).Lemma 10.2 If �1 � �01 we have�GPS(�1)1 � �GPS(�01)1 and �GPS(�1)2 � �GPS(�01)2 :Proof : We only prove the �rst relation. The second can be obtained by a symmetricalargument. We use the result of Theorem 9.3. Note that �1 � �01, implies �02 = (1 � �01) ��2 = (1 � �1). Thus, by Lemma 8.2, for all u; � � 0 we have that �B(�� + �2u) ��B(�� + �02u), which by Thm. 9.3 implies �GPS(�1)(�) � �GPS(�01)(�) for all �. Therefore,by convexity, for ��GPS, as it is de�ned in Thm. 9.3, we have ��GPS(�1) � ��GPS(�01).A similar property is proven for the GLQF policy.



Sec. 10 A Comparison 41Lemma 10.3 If � � �0 we have�GLQF (�)1 � �GLQF (�0)1 and �GLQF (�)2 � �GLQF (�0)2 :Proof : Again we only prove the �rst relation. The second can be obtained by a symmetricalargument. We use the optimal control formulation of Section 5.2. We argued there thatoptimal trajectories have the form of Figure 5(d) and (e), with cost infa 1a�I�GLQF (a) andinfa 1a�II�GLQF (a), respectively. Let us �x � and consider how the cost is a�ected by usingthe policy with �0 = � + �, for small � > 0.Consider �rst trajectories of the form in Figure 5(e). Note that we can rewrite�II�GLQF (�)(a) as�II�GLQF (�)(a) = infx1��x3=ax1+x2�x3=�(1+a)0��<1 [��A1(x1) + ��A2(x2) + ��B(x3)]:We shall show �II�GLQF (�0)(a) � �II�GLQF (�)(a) for all a � 0. Assume the contrary. Con-sider the optimal solution of the problem corresponding to �0 which satis�es the feasibilityconstraints x01 � �0x03 = ax01 + x02 � x03 = �0(1 + a)0 � �0 < 1We distinguish two cases: �0 > 0 and �0 = 0. We provide an argument only for the �rstcase. The second case can be handled similarly. Since �; a � 0, at least one of the followingholds: x01 > E[A10] or x02 > E[A20] or x03 < E[B0]. Depending on which one is the case we candecrease x01, or x02, or increase x03, respectively, reducing the cost, until x01+x02�x03 = �(1+a).Thus, we have constructed a feasible solution of the problem corresponding to � withsmaller cost than �II�GLQF (�0)(a). This contradicts our initial assumption. We conclude thatby increasing � to �0 we also increase the optimal cost of trajectories having the form inFigure 5(e).If now, an optimal trajectory has the form in Figure 5(d), then it will still be the optimal,by convexity, when � is increased to �0. Thus, in this case, the optimal cost does not change.We summarize by considering how the cost is a�ected as � is increased from 0 to 1.At � = 0, possible optimal trajectories have the form of Figure 5(e). There is a thresholdvalue �� such that for all � � �� optimal trajectories have the form of Figure 5(e) with valuesincreasing as � increases from 0 to ��. For all � > �� optimal trajectories have the form of



Sec. 10 A Comparison 42Figure 5(d) with slope �� and do not change as � increases from �� to 1.We next prove a su�cient condition for the GLQF curve dominating the GPS curve.Lemma 10.4 If for all � 2 [0;1) there exists �1 2 [0; 1) such that�GPS(�1)1 � �GLQF (�)1 and �GPS(�1)2 � �GLQF (�)2 ;then the GLQF curve dominates the GPS curve.Proof : We use contradiction. Assume that the condition given in the statement holds butthe GLQF curve does not dominate the GPS curve. Then, by de�nition, there exist �0 and�01 such that �GPS(�01)1 > �GLQF (�0)1 and �GPS(�01)2 > �GLQF (�0)2 :By Lemma 10.2 all points with �1 < �01 have �GPS(�1)2 � �GPS(�01)2 > �GLQF (�0)2 . Also, bythe same lemma, all points with �1 � �01 have �GPS(�1)1 � �GPS(�01)1 > �GLQF (�0)1 . Thiscontradicts our initial assumption.We now have all the necessary tools to prove that the GLQF curve dominates the GPScurve.Theorem 10.5 Assuming that the arrival and service processes satisfy Assumptions A, C,and B, the GLQF curve dominates the GPS curve.Proof : Fix an arbitrary �. We will prove that there exists �1 satisfying the conditionof Lemma 10.4. It su�ces to prove that for both queues and such �1, over
ow with theGLQF(�) policy implies over
ow with the GPS(�1) policy. Then, the over
ow probabilityof GLQF(�) is a lower bound on the corresponding probability of GPS(�1), i.e., it holdsP[LjGLQF (�) > U ] � P[LjGPS(�1) > U ]; j = 1; 2;which implies �GPS(�1)1 � �GLQF (�)1 and �GPS(�1)2 � �GLQF (�)2 :Since we have established that both in the GPS and the GLQF case, the over
owprobability is equal to the probability of over
owing according to one out of two scenarios,it su�ces to establish the above only for these scenarios. In particular, we distinguish



Sec. 10 A Comparison 43the following cases depending on the possible modes of over
ow for GLQF(�), which aredescribed in Section 6.2.Case 1: Mode 1 for over
ow of Q1 and mode 1 for over
ow of Q2.Case 2: Mode 1 for over
ow of Q1 and mode 2 for over
ow of Q2.Case 3: Mode 2 for over
ow of Q1 and mode 1 for over
ow of Q2.Case 4: Mode 2 for over
ow of Q1 and mode 2 for over
ow of Q2.In Case 1 and 2, we have x1 � x3 = a;x2 � �a;where xj; j = 1; 2; 3; a, solve the optimization problem corresponding to the over
ow ofQ1 in mode 1. Then, since x1 � �1x3 � x1 � x3 = a 8�1, it is clear that for all �1 the GPSpolicy will over
ow Q1. If we are in Case 1, then also for all �1 the GPS policy will over
owQ2. If we are in Case 2, we have y2 � �y3 = a;y1 � (1� �)y3 = a=�;0 � � < 1;where yj; j = 1; 2; 3; a; �, solve the optimization problem corresponding to the over
ow ofQ2 in mode 2. Then, the GPS policy with �1 � 1� � will over
ow Q2.Consider now Cases 3 and 4. We havex1 � �x3 = a;x2 � (1� �)x3 = a�;0 � � < 1;where xj; j = 1; 2; 3; a; �, solve the optimization problem corresponding to the over
ow ofQ1 in mode 2. Then the GPS policy with �1 � � will over
ow Q2. In Case 3, for reasonsexplained in the previous paragraph, the GPS policy will over
ow Q2 for all �1. If, �nally,we are in Case 4, we have y2 � (1� �0)y3 = a0;y1 � �0y3 = a0=�;
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