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Abstract

We consider a multiclass multiplexer with support for multiple service classes, and dedicated
buffers for each service class. Under specific scheduling policies for sharing bandwidth
among these classes, we seek the asymptotic (as the buffer size goes to infinity) tail of
the buffer overflow probability for each dedicated buffer. We assume dependent arrival
and service processes as is usually the case in models of bursty traffic. In the standard
large deviations methodology, we provide a lower and a matching (up to first degree in
the exponent) upper bound on the buffer overflow probabilities. We introduce a novel
optimal control approach to address these problems. In particular, we relate the lower bound
derivation to a deterministic optimal control problem, which we explicitly solve. Optimal
state trajectories of the control problem correspond to typical congestion scenarios. We
explicitly and in detail characterize the most likely modes of overflow. We specialize our
results to the generalized processor sharing policy (GPS) and the generalized longest queue
first policy (GLQF). The performance of strict priority policies is obtained as a corollary.
We compare the GPS and GLQF policies and conclude that GLQF achieves smaller overflow
probabilities than GPS for all arrival and service processes for which our analysis holds. Our
results have important implications for traffic management of high-speed networks, and can
be used as a basis for an admission control mechanism which guarantees a different loss

probability for each class.

Keywords: Communication networks, ATM-based B-ISDN, Large Deviations.



1 Introduction

High speed, packet-switched communication networks, for example ATM-based B-ISDN
networks, accommodate various types of traffic (digitized voice, encoded video, and data)
and offer a variety of services. One of the central and most challenging current problems in

computer networking is the design and the operation of these networks.

Congestion causes packet losses, due to buffer overflows, and excessive delays, phenom-
ena that greatly contribute to the degradation of the quality of service (QoS) that the
network delivers to its users. Since voice and video are very sensitive to such phenomena
the network should have the ability to guarantee certain QoS parameters to the user. We
quantify QoS by the probability of buffer overflow. It is desirable to operate the network
in a regime where packet loss probabilities are very small, e.g., in the order of 107, An
essential step for preventing congestion through a variety of control mechanisms (buffer
dimensioning, admission control, resource allocation) is to determine how it occurs and to
estimate the probabilities of congestion phenomena. The problem is particularly difficult
since it essentially requires finding the distributions of queue lengths in a multiclass net-
work of G/G/1 queues with correlated arrival processes (since it is needed to model bursty
traffic) and non-exponentially distributed service times. In this light, it is natural to focus
on the large deviations regime and obtain asymptotic expressions for the tails of congestion
probabilities.

In this paper we focus on a simplified version of the problem which retains the most
salient features, that is, it is multiclass and has correlated arrival and service processes.
In particular, we consider a multiclass multiplezer (switch) which accommodates multiple
service classes. A service class is characterized by the statistical properties of the incoming
traffic and by the QoS requirements. Different types of traffic (i.e., voice, video, data,
etc.) have different statistical properties, and in addition they may have distinct QoS
requirements (e.g., video may need more stringent QoS requirements than voice), thus,
they belong to different service classes. Moreover, sessions of the same type of traffic may
belong to different service classes if they have different QoS requirements (e.g., we can

consider a situation where we want to support both high and low quality video).

Under specific scheduling policies for sharing bandwidth among service classes we seek,
the asymptotic (as the buffer size goes to infinity) tail of the buffer overflow probability
that each class experiences. We focus on the generalized processor sharing policy (GPS)
(introduced in [DKS90] and further explored in [PG93, PGY94]), and the generalized longest
queue first policy (GLQF'). The GLQF policy is a generalization of the longest queue first
policy (LQF), under which the server allocates all of its capacity to the longest queue. Both

of these policies are parametric policies and for specific values of the parameters reduce to
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strict priority policies. Thus, the performance of strict priority policies is obtained as a
corollary of our results (approximate results for priority policies are reported in [EM95]).

In the standard large deviations methodology, we provide a lower and a matching (up
to first degree in the exponent) upper bound on the buffer overflow probabilities. We
prove that overflows occur in one out of two most likely ways (modes of overflow) and we
explicitly and in detail characterize these modes. We address the case of multiplexing two
different traffic streams. (The general case of N streams is more complicated since there
is an exponential explosion of the number of overflow modes.) Our results have important
implications in traffic management of high-speed networks. They can be used as a basis
for an admission control mechanism which provides statistical QoS guarantees for each
service class, and allows for different QoS requirements for each class (see [Pas97] where
this direction is pursued).

We wish to note at this point that although our principal motivation for studying this
problem is computer networking, our results have applications in other queueing situations,

e.g., service industry and manufacturing systems.

Large deviations techniques have been applied recently to a variety of problems in
communications (see [Wei95] for a survey). The problem of estimating tail probabilities
of rare events in a single class queue has received extensive attention in the literature
[Hui88, GHI1, Kel91, KWC93, GW94, EM93, TGT95]. The extension of these ideas to sin-
gle class networks, although much harder, has been treated in various versions and degrees
of rigor in [BPT97a, GA96, Cha95, O’C95a, dAVCW9I3].

Closer to the subject of this paper, the asymptotic tails of the overflow probabilities for
the GPS policy with deterministic service capacity are obtained in [dVK95] and [Zha97].
Both papers use a large deviations result for the departure process from a G/D/1 queue
[dVCW93]. Tail overflow probabilities for the GPS policy and deterministic service capacity
were also reported in [0’C95b, CW95]. The authors in [CW95] view the problem as a control
problem where control variables are the capacity that the server allocates to each buffer, as
a function of the current state. This approach has some technical problems with boundaries

because it requires Lipschitz continuity of the controls.

In [GGG ™93] the authors suggest the use of the LQF policy in high speed networks and
use a deterministic model (only the rate of each incoming stream is known) to calculate
buffer sizes that guarantee no loss with probability one. Our analysis significantly extends
the scope of this work by generalizing the policy (GLQF) and by taking the statistical
properties of the incoming traffic into account. This leads to a more efficient utilization of
the network resources. Large deviations results for the LQF policy in an M/M/1 setting
are also reported in [SW95].

We consider the following to be some of the main contributions of the work in this paper:
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e The derivation of tight asymptotic expressions for the performance of multiclass mul-
tiplexers operated under sophisticated (and of interest in practice) scheduling policies

for sharing bandwidth among classes.

e The introduction of an optimal control approach to address the problem. Our formu-
lation is different from the one in [CW95]. In particular, the exponent of the overflow
probability is the optimal value of the control problem, which we explicitly solve. Op-
timal state-trajectories of the control problem correspond to the most likely modes
of overflow; from the solution of the control problem we obtain a detailed characteri-
zation of these modes. This optimal control formulation is general enough to include
any scheduling policy; only the dynamics of the system are policy dependent. Opti-
mal control formulations are also used in [SW95] for large deviations results for jump

Markov processes.

e The extension of some GPS results existing in the literature to the case of a stochastic
service capacity. This extension makes it possible to treat more complicated service
disciplines. Consider for example the case where we have a deterministic server and
three classes with dedicated buffers. We give priority to the first class and use the
GPS policy for the remaining two. These two remaining classes face a GPS server with
stochastic capacity. Stochastic capacity significantly alters the way overflows occur.
To see this, note that in deriving their results [dVK95] and [Zha97] use the departure
process from a G/D/1 queue. The large deviations behaviour of the departure process

is different with deterministic and stochastic service capacity as it is pointed out in
[BPT97a, CZ95].

e The introduction of a new policy, the GLQF, which generalizes the LQF policy. We
provide analytic performance analysis results for the GLQF policy and compare it to
the GPS policy. We argue that GLQF is preferable, at least in the absence of fairness

considerations.

Regarding the structure of this paper, we begin in Section 2 with a brief review of the
large deviations results that we will use. We also state a set of assumptions that arrival and
service processes need to conform to. In Section 3 we formally define the multiclass model
that we consider and in Subsections 3.1 and 3.2 we introduce the the GPS and the GLQF
policy, respectively. Moreover, in Subsection 3.3 we provide an outline of the methodology
that we follow in proving our results. In Section 4 we establish lower bounds on the overflow
probability under the GLQF (Subsection 4.1) and the GPS policy (Subsection 4.2). The
optimal control formulation is introduced in Section 5 and the results are specialized to
the GPS (Subsection 5.1) and the GLQF (Subsection 5.2) case. In Section 6 we describe

the most likely modes of overflow, under both policies, obtained from the solution of the
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corresponding control problems. In Section 7 we state the upper bound for the GPS policy
(the proof is quite technical and involved and we omit it in the interest of space; we refer
the interested reader to [BPT97b]). Section 8 contains the proof for the upper bound in
the GLQF case. We gather our main performance analysis results in Section 9, where we
also treat the special case of strict priority policies. Finally, we compare the two scheduling

policies in Section 10. Conclusions are in Section 11.

2 Preliminaries

In this section we review some basic results on the theory of large deviations [DZ93, SW95,
Buc90] that will be used in the sequel.

We first state the Girtner-Ellis Theorem [G77, El184] (see also Bucklew [Buc90], and
Dembo and Zeitouni [DZ93]) which establishes a Large Deviations Principle (LDP) for
dependent random variables in R. It is a generalization of Cramér’s theorem [Cra38] which

applies to independent and identically distributed (i.i.d.) random variables.

Consider a sequence {S1, Sy, ...} of random variables, with values in R and define

2

Aa(6) 2 log B[] (1)

For the applications that we have in mind, S, is a partial sum process. Namely, S, =
Soiy Xi, where X;, i > 1, are identically distributed, possibly dependent random variables.

Assumption A
1. The limit

AO) 2 lim Ap(0) = lim = log BJe?"] @)

n—0o00 n—oc N,

exists for all 0, where 00 are allowed both as elements of the sequence A, (6) and as

limit points.
2. The origin is in the interior of the domain Dy 2 {6 ] A(0) < oo} of A(B).

3. A(0) is differentiable in the interior of Dx and the derivative tends to infinity as 0
approaches the boundary of Dy.

4. N(0) is lower semicontinuous, i.e., liminfy 9 A(6,) > A(0), for all 6.

Theorem 2.1 (Géartner-Ellis) Under Assumption A, the following inequalities hold
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Upper Bound: For every closed set F

1 n .
lim sup — log P [S— € F] < — inf A*(a). (3)
n

n—oc N acl

Lower Bound: For every open set G

lim infl log P S € G] > — inf A*(a), (4)
n—o0c N n acG
where
v A
A*(a) = sup(fa — A(0)). (5)
0

We say that {S,} satisfies a LDP with good rate function A*(-). The term “good” refers
to the fact that the level sets {a | A*(a) < k} are compact for all £ < oo, which is a
consequence of Assumption A (see [DZ93] for a proof).

It is important to note that A(-) and A*(-) are convex duals (Legendre transforms of

each other). Namely, along with (5), it also holds

A(B) = sgp(@a — A (a)). (6)

The Gartner-Ellis Theorem intuitively asserts that for large enough n and for small
e >0,

P[S, € (na — ne,na + ne)] ~ e "0,
A stronger concept than the LDP for the partial sum random wvariable S, € R, is the
LDP for the partial sum process (Sample path LDP)

Y Xi  telo1].

Note that the random variable S, = "' | X; corresponds to the terminal value (at ¢t = 1)
of the process Sy, (t), t € [0,1]. In a key paper [DZ95], under certain mild mixing conditions
on the stationary sequence {X;; ¢ > 1}, Dembo and Zajic establish an LDP for the process
Sp(+) in D[]0, 1], (R, ||-||sc )] (the space of right continuous functions with left limits equipped
with the supremum norm topology). Their result is a starting point for our analysis in this

paper. In particular, we will be assuming the following version of the sample path LDP.
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Assumption B

For all m € N, for every e, for every e > 0 sufficiently small, and for every scalars
ag,--- Um_1, there exists M > 0 such that for all n > M and all kg, ... Kk, with 1 =Fky <
ki <o <km=n,

exp { <n€2 + i: (ki1 — ki)A*(ai)> } <
i=0

P[Sk,., — Sk,

i

— (kiy1 —ki)a;| < e, i=0,... ,m—1] <

m—1
exp { (m Y (ki ki)A*(ai)) } . (7
0

1=

it+1

A detailed discussion of this assumption, and the technical conditions under which it is
satisfied is given in [DZ95]. In the simpler case where dependencies are not present (i.e.,
S; = Z;‘:l X, where X;’s are i.i.d.), Assumption B is a consequence of Mogulskii’s theorem
(see [DZ93]). Intuitively, Assumption B deals with the probability of sample paths that are
constrained to be within a tube around a “polygonal” path made up with linear segments
of slopes ag, ... ,ay,—1. In [DZ95] it is proved that this assumption is satisfied by processes
that are commonly used in modeling the input traffic to communication networks, that is,
renewal processes, Markov modulated processes, and correlated stationary processes with

mild mixing conditions.

We will be also making the following related assumption.

Assumption C
For all m € N there exists M > 0 and a function T'(-) with 0 < T'(y) < oo, for all y > 0,
such that for all n > M and all kg, ... ,ky, with 1 =k <k <---<k, =n,

E[e"7] < eXP{Z[(kj — ki) A(8;) + F(9j)]}a ®)

7=1
where 0 = (01,...,0m) and Z = (Sky, Sky — Skys- - + Sk, — Sk, 1)

Chang [Cha95] provides a uniform bounding condition under which Assumption B is true,
and verifies that the condition is satisfied by renewal, Markov-modulated, and stationary
processes with mild mixing conditions. Using his uniform bounding condition it can be
verified (see [Cha95] for a proof) that Assumption C is also satisfied. This latter assumption

can be viewed as the “convex dual analog” of Assumption B.

. . . . A ]
On a notational remark, in the rest of the paper we will be denoting by Si),(j = ?C:Z. Xk,

i < j, the partial sums of the random sequence {X;; i € Z}. We will be also denoting by

Ax(-) and A% (-) the limiting log-moment generating function and the large deviations rate
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function (cf. Egs. (2) and (5)), respectively, of the process X.

3 A Multiclass Model

In this section we introduce a multiclass multiplexer model that we plan to analyze, in the
large deviations regime, under two specific scheduling policies for sharing bandwidth among
classes: the generalized processor sharing policy (GPS) and the generalized longest queue
first policy (GLQF) . The former policy is described in Subsection 3.1 and the latter one in

Subsection 3.2. Subsection 3.3 provides an outline of the approach we follow.

Consider the system depicted in Figure 1. We assume a slotted time model (i.e., discrete

Al

\ Ql

/ Q2

A2

Figure 1: A multiclass model.

time) and we let Al (resp. A?), i € Z, denote the number of class 1 (resp. 2) customers
that enter queue Q' (resp. @?) at time i. Both queues have infinite buffers and share the
same server which can process B; customers during the time interval [i,i 4+ 1]. We assume
that the processes {A}; i € Z}, {A?; i € Z} and {B;; i € Z} are stationary and mutually
independent. However, we allow dependencies between the number of customers at different

slots in each process. For stability purposes we assume that for all ¢
E[B;] > E[4;] + E[47]. (9)

We denote by L} and L?, the queue lengths at time 7 (without counting arrivals at
time 7) in queues Q' and Q?, respectively. We assume that the server allocates its capacity
between queues Q' and Q? according to a work-conserving policy (i.e., the server never stays
idle when there is work in the system). We also assume that the queue length processes
{LZ,j = 1,2,7 € Z} are stationary (under a work-conserving policy, the system reaches

steady-state due to the stability condition (9) by assuming ergodicity for the arrival and

service processes).
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To simplify the analysis and avoid integrality issues we assume a discrete-time “fluid”
1

model, meaning that we will be treating A}, A? and B; as real numbers (the amount of fluid

entering or being served). This will not affect the results in the large deviations regime.
Finally, we assume that the arrival and service processes satisfy a LDP (Assumption A),
as well as Assumptions B and C. As we have noted in Section 2, these assumptions are
satisfied by processes that are commonly used to model bursty traffic in communication net-
works, e.g., renewal processes, Markov-modulated processes, and more generally stationary

processes with mild mixing conditions.

3.1 The GPS policy

The generalized processor sharing (GPS) policy was proposed in [DKS90] and further ex-
plored in [PG93, PGY94]. According to this policy the server allocates a fraction ¢, € [0,1]
of its capacity to queue Q', and the remaining fraction ¢o = 1 — ¢ to queue Q%. The
policy is defined to be work-conserving, which implies that one of the queues, say queue
Q', may get more than a fraction ¢; of the server’s capacity during times that the other
queue, Q?, is empty. This policy is also known as fair queueing, because it guarantees a
certain fraction of the available bandwidth to each class, and thus, avoids situations that

occur under FCFS where a bursty class can take the lion’s share of the bandwidth.

More formally, we can define the GPS to be the policy that satisfies (work-conservation)
Lig+ Liyy = [Li + L + A} + A7 - Bi]*,

and

Ll <[LI+ Al —¢;B]",  j=12

where [z]T 2 max{z,0}.

3.2 The GLQF policy

Figure 2 depicts the operation of the generalized longest queue first policy (GLQF) policy
in the L' — L? space. Fix the parameter of the policy 3 > 0. There is a threshold line, of
slope 3, which divides the positive orthant of the L' — L? space in two regions. The GLQF
policy serves class 2 customers above the threshold line and class 1 below it. The value
B = 1 corresponds to the longest queue first (LQF) policy. Intuitively, the GLQF policy
tries to maintain a desirable ratio 8 of the queue lengths per class by attending to the class
that overshoots this ratio. Since delays are due to long queues, it is also intuitive that the
GLQF policy tries to balance (with a § “bias”) the delay of the two classes.

More formally, we define the GLQF policy to be the work-conserving policy that at each
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time slot 4 serves class 1 customers when

LI < BL} and L7+ A7 <B(L} + Al — By).
It serves class 2 customers when

L? > QL) and L+ A? — B; > B(L} + A}).

When
L? < BL} and L7+ A? > B(L} + Al — By),

or when
12> BLY and L} + A? - B; < (L} + A}),

then the GLQF policy allocates appropriate capacity to both classes of customers such that
L22+1 = ﬂL}H. Similarly, whenever le = ﬂLZl, the GLQF policy allocates its capacity to
class 1 and 2 customers so that L22+1 = BLZ-IH, if possible.

L2

Serve 2

Serve 1

/. tanw =

Ll

Figure 2: The operation of the GLQF policy.

3.3 An outline of our approach

We are interested in estimating the steady-state overflow probability P[L! > U] for large
values of U, at an arbitrary time slot 4, under both the GPS and the GLQF policy. Hav-
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ing determined this, the overflow probability of the second queue can be obtained by a

symmetrical argument.

We will prove that these overflow probabilities satisfy

P[L! > U] ~ e Ubars, (10)
and
P[L} > U] ~ ¢ Yrar, (11)

asymptotically, as U — oc.

To this end, we will develop a lower bound on each overflow probability, along with a
matching upper bound. Fix the scheduling policy, and consider all scenarios (paths) that
lead to an overflow. We will show that the probability of each such scenario w asymptotically

behaves as e Vo)

, for some function #(w). For every w, this probability is a lower bound
on P[L] > U]. We select the tightest lower bound by performing the minimization %, =
miny, f(w), in the GPS case, which amounts to solving a deterministic optimal control
problem. Notice that both the function #(w) and the overflow paths w depend on the
policy, hence this minimization will yield a different optimal value in the GLQF case, which
we will denote by GELQF. Optimal trajectories (paths) of the control problem correspond
to most likely overflow scenarios. We will show that these must be of one out of two possible
types, in both the GPS and the GLQF case. In other words, with high probability, overflow

occurs in one out of two possible modes.

To establish the tightness of the lower bounds and show Egs. (10) and (11), we will
obtain an upper bound on P[LZ1 > U]. We will first obtain a sample path upper bound, i.e.,
L} < L} (which implies P[L} > U] < P[L} > U]) and then establish that P[L} > U] is at
most e U%cps in the GPS case, and e U%GLor in the GLQF case.

4 A Lower Bound

In this section we establish a lower bound on the overflow probability P[L! > U], under
each one of the two scheduling policies. We first present the lower bound in the GLQF case,
and then the one in the GPS case. The main idea is that we select the dominant overflow
scenarios which are responsible for overflows with high probability. The optimal control

formulation in Section 5 substantiates why the selected scenarios are the dominant ones.
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4.1 GLQF lower bound

Proposition 4.1 (GLQF Lower Bound) Assuming that the arrival and service processes
satisfy Assumptions A and B, and under the GLQF policy, the steady-state queue length,

L', of queue Q', at an arbitrary time slot satisfies

1
lim —logP[L' > U] > —6; 12
UI_T)I;OUOg[ > U] > —0GLor (12)
where GELQF s given by
0y op = min | inf ~AL o (a), inf ~AL70 - (a) (13)
Q a>0 a @Q "a>0 a @ ’

and the functions Aé*LQF(-) and AgL*QF(-) are defined as follows

% AN . * * *
AéLQF(a‘) = mg}fza [A%yi (z1) + Ao (z2) + A (w3)], (14)
z2<f(z1—3)
and
AgLQF(a) = inf (A% (z1) + Ao (22) + Ag(z3)]- (15)

T1—¢pr3=a
zo—(1—¢)rs=pPa
0<p<1

Proof : Let —n < 0 and a > 0. Fix z1,z9,23 > 0, 0 < ¢ < 1, and €1,€e2,e3 > 0 and

consider the event

A 1 : 2 .
A= {54 (n—1i)z1| < e, |an77i71 — (n —1i)xa| < e,

—n,—i—1
‘an,—i—l —(n—1)z3| <en, i=0,1,... ,n—1}

Notice that x1, z9 (resp. z3) have the interpretation of empirical arrival (resp. service) rates

during the interval [—n, —1]. We focus on two particular scenarios

Scenario 1: T — T3 =a Scenario 2: 1 — ¢r3 =a

(16)
zo < Bz — x3) ry — (1 — ¢)r3 = Ba
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Uin [-n,0] we have

Under Scenario 1, even if the server always serves class 1 customers
that L} > na — ne), where €} — 0 as €7, €2, €3 — 0.

Consider now Scenario 2, and let us for the moment ignore €’s (i.e., €1 = €3 = €3 = 0).
We will argue that L} > na. If L%, = BLY, then both queues build up together, with
the relation L? = BL' holding in the interval [-n,0]. According to the GLQF policy the
server arbitrarily allocates its capacity to the two queues, giving fraction ¢ to Q' and the
remaining 1 — ¢ to Q?, yielding L} = na + L', > na. If L2, > BL', then the first queue
receives less capacity than ngzs in [—n,0], resulting also in L} > na. Finally, consider the
case L?, < BL',. Then at some time —¢ € [-n,0] we have L' , = L'+ (n — t)(z; — x3)
and L?, = L%, + (n — t)z. Notice that zo > B(z1 — 73), since otherwise, we have a
contradiction, i.e.,

fa < x9 < Bz — 23) < Pa.

Thus, for large enough n, there exists some ¢, say t*, such that L%t* = ﬂL{t*. This
relationship, along with L' ,. + L? ,. > (n—t*)(1+ B)a implies L' ,. > (n —t*)a. Now note
that from #* and on both queues build up together with the relation L? = SL' holding.
Observing that L) > L' ,. + t*a, we conclude that L} > na.

When we take the €’s into account a similar argument holds. With €1, €e2,e3 > 0 and
with the same ¢ there exists €}, > 0 such that the queue lengths are within an €, band of the
values in the previous paragraph, resulting in L} > na —nel, where €, — 0 as €7, €2, €3 — 0.

The probability of Scenario 1 is a lower bound on P[L} > na]. Calculating the proba-
bility of Scenario 1, maximizing over 1, 9 and x3, to obtain the tightest bound, and using

Assumption B we have

P[L{ > n(a—€)] >  sup P[\Sf:l,,i,l—(n—i):vl\ <en,i=0,1,... ,n—1]
Tr1—Tr3=a
r2<f(a1—3)

x P[|S4, i1~ (n—i)wz| <em, i=0,1,...,n— 1]
x PS5, ;1 —(n—i)zs| <em, i=0,1,... ,n—1]

> exp{n( inf  [A%i(z1) + Al (22) + A(z3)] + e) }

T1—T3=a

z2<B(x1—x3)

:eXP{—"(Aé*LQF(a) +€)}, (17)

where n is large enough, and €},e — 0 as €1, €2, €3 — 0.

Ywhich is the case if we start from an empty system at time —n and the arrival and service rates are
exactly z1,x2, 3, respectively. Then the second queue, since it receives zero capacity, builds up with rate
T9, and its level always stays below SL'. This is a necessary condition for the first queue to be receiving all
the capacity.
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Similarly, calculating the probability of Scenario 2, we have

PLy>n(a—e)]>  sup  P[ISY ,—(n—i)a|<em, i=0.1,...,n—1]
T1—¢pr3=a ’

zo—(1—¢)r3=Pa

0<p<1
x P| ‘sz,—i—l —(n—1d)xe| <emn, i=0,1,... ,n—1]
x PS5, ;1 —(n—i)zs| <em, i=0,1,... ,n—1]
> exp{—n inf (A% (z1) + A%yo(22) + A (z3)] + e') }
T1—prz=a
z2—(1—¢)x3=Fa
0<p<1
=exp{-n(AGLgr(a) + )}, (18)

where n is large enough, and the €,,¢’ — 0 as €, €2,€3 — 0.

Combining Eqs. (17) and (18) we obtain that for all €,¢’ > 0 there exists N such that
foralln > N

1 . * *
- log P[Ly > n(a — )] > —(min(A¢Lor(a), AdLgr(a)) + €). (19)

As a final step to this proof, letting U = n(a — €), we obtain that for all €, > 0 there
exists Uy such that for all U > Uy

U log P[L' > U] = m log P[Lg > n(a—e)] > T a— E(mln(AéLQF(a‘)aAgLQF‘(a))'I_eI)a
which implies

lim T logP[L' > U] > - mln(AéLQF(a),AgLQF(a,)).

U—o0

Since a, in the above, is arbitrary we can select it in order to make the bound tighter.

Namely,

: 1 1 : : 1 I : 1 11
Jim log P[L" > U] > — min inf EAGLQF(a)aégg EAGLQF(G‘) :

4.2 GPS lower Bound

We next turn our attention to the GPS policy and establish a lower bound on the overflow

probability. In the interest of space we provide an outline of the proof. The complete proof
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can be found in [BPTY7b].

Proposition 4.2 (GPS Lower Bound) Assuming that the arrival and service processes
satisfy Assumptions A and B, and under the GPS policy, the steady-state queue length L'

of queue Q' satisfies

1
lim — logP[L' > U] > —0%ps, (20)
U—oo U
where 0F,pg 15 given by
0¢:pg = min | inf 1[\5‘ g(a), inf lAg*s(a) (21)
P a>0a GV as0 o0 6P ’

and the functions ALpg(-) and ALjg() are defined as follows

% A . * * *
AGps(a) = ooty A (1) + A, (72) + A (23)], (22)
z2<¢2x3
and
% A . * * *
M@ 2 int  [A() + A () + A (as) (23
r1—@Q1r3=a
T22> P23

Proof (Outline) : Let —m < 0 and a > 0. Let also z1,29,23 > 0 be the empirical
arrival and service rates during the interval [—n, —1] (in the sense introduced in the proof
of Proposition 4.1).
We focus on two particular scenarios
Scenario 1: z1 + 29 — 23 = a Scenario 2: 1 — ¢1z3 =a

(24)
9 < Pox3 Ty > Pox3.

Under both scenarios it can be established that L} > na. Calculating their probabilities we
obtain a lower bound on P[L} > na]. We then optimize over all the parameters involved
and use arguments similar to the ones in Proposition 4.1 to arrive at Eq. (20).

[ |

5 The optimal control problem

In this section we introduce an optimal control problem for each of the two scheduling poli-

cies and show that its optimal value provides the exponents 67,54 and GELQF, respectively,
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of the overflow probabilities. We will first motivate the control problem formulation and es-
tablish some properties that are independent of the scheduling policy. We will subsequently
specialize the results to the GLQF and the GPS policy.

To motivate the control problem, we relate it, heuristically, with the problem of obtaining
an asymptotically tight estimate of the overflow probability 2. For every overflow sample
path, leading to L} > U, there exists some time —n < 0 that both queues are empty. Since
we are interested in the asymptotics as U — oo, we scale time and the levels of the processes
A', A? and B by U. We then let T' = 7 and define the following continuous-time functions

in D[—T,0] (these are right-continuous functions with left-limits):

; 1 , 1
LI(t) = EL’LU”, ji=1,2 8§%1t) = EsifUT,LU”, X € {A', A%, B}, forte[-T,0).
Notice that the empirical rate of a process X is roughly equal to the rate of growth of S* (¢).
More formally, we will say that a process X has empirical rate z(¢) in the interval [T, 0]
if for large U and small € > 0 it is true

‘Sx(t) — ./tT:r(T) dr| <, Vt e [-T,0],

where z(t) are arbitrary non-negative functions. We let, z(), z2(¢) and z3(¢) denote the
empirical rates of the processes A', A2 and B, respectively. The probability of sustaining
rates x1(t), z2(t) and z3(t), in the interval [-UT, 0] for large values of U is given (up to first
degree in the exponent) by

0
eXp{—U/T[AZI(wl(t)) + Ao (22(8)) + A (23(2))] dt}-
This cost functional is a consequence of Assumption B. With the scaling introduced here as
U — oc the sequence of slopes ag, a1, ... ,a,,_1 appearing there converges to the empirical
rate z(-) and the sum of rate functions appearing in the exponent converges to an integral.

We seek a path with maximum probability, i.e., a minimum cost path where the cost
functional is given by the integral in the above expression. This optimization is subject to
the constraints L'(—~7T) = L?(—T) = 0 and L'(0) = 1. The fluid levels in the two queues
L'(t) and L?(t) are the state variables and the empirical rates z(t), zo(t) and z3(t) are
the control variables. The dynamics of the system depend on the state and the scheduling
policy employed. According to the policy, we will distinguish a number of regions of system

dynamics. We do not yet specify the scheduling policy, we assume however that we employ

2Such a relation can be rigorously established using the sample path LDP for the arrival and service
processes, as it is defined in [DZ95] and [Cha95].
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a scheduling policy with linear dynamics. More specifically, we consider M conwvex subsets

R1,...,Ruy of the positive orthant such that
UM R ={(L',L*) | L' >0, L? >0}, RiNR; =2, Vi#j.

We fix constants ’)’712j ,i,’)’%j jforj=1..,Mand: =123, and consider the following

system dynamics:
Region R;: (L'(t),L%*(t)) € R; where
L' = ’Y?lzj,lxl(t)‘i‘%lzj ,2$2(t)—’)’712]-,3$3(t)= L? = ’)’722]-,1131@)"")’722]-,2132(75)—7722]- 3%3(1),
LY+ L% = 2y (t) + m2(t) — 23(t).

Dotted variables in the above expressions denote derivatives 3. Let (DYNAMICS) denote
the set of state trajectories L’ (t), j = 1,2, t € [T, 0], that obey the dynamics given above.

Motivated by this discussion we now formally define the following optimal control prob-
lem (OVERFLOW). The control variables are x;(t), j = 1,2,3, and the state variables are
Li(t), 5 =1,2, for t € [-T,0], which obey the dynamics given in the previous paragraph.

0

(OVERFLOW) minimize /T[Af41(x1(t)) + A (z2(t)) + A (z3(t))] di (25)
subject to: L'(—T) = L*(-T) =0
L'(0) =1
L2(0) : free
T: free

{L/(t): te[-T,0], j =1,2} € (DYNAMICS).

The first property of (OVERFLOW) that we show is that optimal control trajectories

can be taken to be constant within each of the state dynamics regions.

Lemma 5.1 Fiz a time interval [Ty, —T5]. Consider a segment of a control trajectory
{z1(t), z2(t), z3(t); t € [-T1,—Ts]}, achieving cost V, such that the corresponding state
trajectory {L1(t), L*(t); t € (=Th,—T»)} stays in one of the regions Rj. Then there exist

scalars x1, T9 and T3 such that the segment of the control trajectory {z1(t) = z1,z2(t) =

*Here we use the notion of derivative for simplicity of the exposition. Note that these derivatives may
not exist everywhere. Thus, in Region R; for example, the rigorous version of the statement L'+ L7 =
x1(t) + z2(t) — xz3(t) is L (t2) + L*(t2) = L'(t1) + L*(t1) + fff (z1(t) + w2(t) — x3(t)) dt, for all intervals

(t1,t2) that the system remains in Region R;.
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Zo,x3(t) = xg; t € [-T1, —Ta]} achieves cost at most V', with the same corresponding states
att=—T; and t = —T5.

Proof : We will focus on one region of system dynamics, say R;. Consider a segment of

any arbitrary control trajectory {zi(t), z2(t), z3(¢); t € [T, —Ts]}, that satisfies
(L'(-Ty), L(-Ty) = (ar,a2) € Ry, (L'(-T2), L*(-Tp)) = (b1,b2) € R;.  (26)

and stays in Region R;, i.e., (L(t), L?(t)) € R, for all t € (—Ty, —T5), where

t
L5 (t) = ay + / b 171 (r) + ok, ama(r) — A ama(M] dr. K =1,2, tE (~T1,~Th).

-1y
(27)
Moreover, we also have
—Ty
DT = a+ [ by aan(r) + ok, poalr) = oy o) dr = b, k=12, (28)
J-m
We will prove that the time-average control trajectory
1 -
zi(1) = / x;(t) dt, i=1,2,3, Vre[-Ty, Ty, (29)
Tl - T2 —Th

is no more costly. To this end, notice that the time-average trajectory, has the same end
points (i.e., satisfies (26)), moves along a straight line and thus stays in Region R; (by

convexity) for t € (=T, —T»). Moreover, by convexity of the rate functions we have

Ty
/T (Al (21(2) + A2 (22(2) + Ap(zs(t)] dt > (Th — T2)[A%: (21) + A%y (22) + A(23)].

Given this property, to solve (OVERFLOW) it suffices to restrict ourselves to state
trajectories with constant control variables in each of the regions R;. A trajectory is called
optimal if it achieves the lowest cost among all trajectories with the same initial and final
state. Since we have a free time problem, any segment of an optimal trajectory is also
optimal for the problem of moving from the start state to the end state of the segment.

Consider now a control trajectory {z(t); t € [-T,0]} with corresponding state trajec-
tory {L'(t), L*(t); t € [-T,0]}, which leads to a final state (L'(0), L?(0)). Define a scaled
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trajectory as

2@t) =zl (t)a),  i=1,2,3, t € [—aT,0],

)

Q' (t) = al/(t/a), j=1,2, t€[~aT,0),

and note that it leads to the final state (L' (0), aL?(0)). Then, the cost of the @ trajectory

is given by

0
/ [N @R (0) + N () + A (0] dt =

0
a/T[A’Zu (a1 (1) + Mo (25 (1)) + A (25 (1)) dt.
Using this observation, it follows easily that every scaled version of an optimal trajectory is
optimal for the corresponding terminal state. For example, given this homogeneity property
we can compare the state trajectories in Figure 3(a), (b) and (c). If the trajectory in
Figure 3(a) is optimal, then so does the scaled version (by o = ag/ay) in Figure 3(b). As a
consequence, its segment which appears in Figure 3(c) is also optimal (since we have a free

time problem).

L2
b1
s
a
bla—f
a2 L'
ar
a
b2
1

Figure 3: By the homogeneity property, optimality of the trajectory in (a) implies
optimality of the trajectory in (b) which in turn implies optimality of the trajectory
in (c).
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In the rest of this section we will specialize the optimal control formulation to the GPS
and the GLQF case, and use Lemma 5.1 along with the homogeneity property to obtain an
optimal solution.

5.1 The GPS optimal control problem

In the case of the GPS policy we will distinguish three regions of system dynamics, depend-

ing on which of the two queues is empty. In particular,
Region R: L'(t), L?(t) > 0, where according to the GPS policy

Ll = .’I,'l(t) - (,Z')l’I'g(t) and LQ = .’I,'Q(t) - (,Z')Q.’I,‘g(t),

Region Ry: L'(t) =0, L%(t) > 0, where according to the GPS policy

L2 = .’I,‘l(t) + .’I/‘Q(t) — .’I,‘3(t),

Region R3: L'(t) > 0, L%(t) = 0, where according to the GPS policy
L' = x1(t) + 22(t) — z3(t).

We let (GPS-DYNAMICS) denote the set of state trajectories L’(t), j = 1,2, t € [-T,0],
that obey these dynamics. We will denote by (GPS-OVERFLOW) the special case of
the problem (OVERFLOW), where state trajectories are constrained to satisfy (GPS-
DYNAMICS).

The main result of this subsection is the following theorem.

Theorem 5.2 The optimal value of the problem (GPS-OVERFLOW) is given by 05 pg, as
it is defined in Equation (21).

Due to space limitations we will skip the proof; we refer the interested reader to
[BPT97b]. The proof uses Lemma 5.1 and the homogeneity property, and follows an elab-
orate interchange argument to reduce any trajectory which is a potential candidate for

optimality to one of the two trajectories that appear in Figure 4.

5.2 The GLQF optimal control problem

We next turn our attention to the GLQF policy. Depending on the state of the system, we

distinguish the following three regions of system dynamics:
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L2 1.2

Figure 4: In searching for optimal state trajectories of (GPS-OVERFLOW), we
only need to consider trajectories of the form in (a) or (b).

Region Ri: L?(t) > BL'(t), where according to the GLQF policy

L'=z,(t) and L% = zy(t) — z3(t),

Region Ry: L?(t) < BL'(t), where according to the GLQF policy

L' =z,(t) —x3(t) and L% = zy(t),

Region R3: L?(t) = BL'(t), where according to the GLQF policy

L'+ L% = 2y (t) + 22(t) — 23(2)

Let (GLQF-DYNAMICS) denote the set of state trajectories L7(t), j = 1,2, t € [-T,0],
that obey these dynamics. We will denote by (GLQF-OVERFLOW) the special case of
the problem (OVERFLOW), where state trajectories are constrained to satisfy (GLQF-
DYNAMICS).

This problem exhibits both the properties of constant control trajectories (cf. Lemma
5.1) within each region of system dynamics, and homogeneity. Using these properties, we
can make the reductions appearing in Figure 5(a), (b) and (c), starting from an arbitrary
trajectory with piecewise constant controls. More specifically, consider first an arbitrary
trajectory with linear pieces as the one in Figure 5(a). We apply Lemma 5.1 to its initial
segment (until it reaches L' = p) and we obtain a no more costly segment which stays
in Region R; and is arbitrarily close to the threshold line L? = BL'. By a continuity
argument, we conclude that the initial segment of the trajectory in Figure 5(a) (until it
reaches L' = p) reduces to the corresponding segment of the trajectory in Figure 5(b).

Using the same argument for the remaining segments of the trajectory in Figure 5(a), it
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reduces to the one in Figure 5(b). We now apply the homogeneity property to the latter
trajectory to finally obtain the trajectory in Figure 5(c). We conclude that optimal state

trajectories can be reduced to having one of the forms depicted in Figure 5(d), (e) and (f).

L? ! L? !
(a) (d)
(b) ()
(c) ()
1 L' 1 L'

Figure 5: By the property of constant controls within each region of system
dynamics the state trajectory in (b) is no more costly than the trajectory in (a).
Also, by the homogeneity property, optimality of the state trajectory in (b) implies
optimality of the trajectory in (c). Candidates for optimal state trajectories are
depicted in (d), (e) and (f). The trajectory in (f) is eliminated as less profitable
to the one in (e). Hence, without loss of optimality we can restrict attention to
trajectories of the form in (d) and (e).

The optimal trajectory of the form shown in Figure 5(d) has value equal to
infT[TAg‘LQF(%)] and the optimal trajectory of the form shown in Figure 5(e) has value
equal to infT[TAg;fQF(%)], where Aé*LQF(-) and Ag,’fQF(-) are defined in Equations (14)
and (15), respectively. Consider now the best trajectory of the form shown in Figure 5(f),

which has value

inf inf  [A%(21) + Al (22) + A (23)]. (30)
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The functions A%, (z2) and Aj(23) are non-negative, convex, and achieve their minimum
value which is equal to 0 at zo = E[A2] and z3 = E[By], respectively. Moreover, due to
the stability condition (9) we have E[A3] — E[By] < 0. Since 7 > 0 and in order to have
Ty — X3 > ﬁ%, it has to be the case that either zo > E[A2] or z3 < E[By]. If the former
is the case, we can decrease z9 and reduce the cost, as long o — z3 > ﬂ% holds. Also, if
x3 < E[By] is the case, we can increase x3 and reduce the cost, as long x9 — x5 > 5% holds.
Thus, at optimality it is true that z9 — z3 = ﬂ%. Then, the expression in (30) is equal to
infT[TAg;fQF(%)] with ¢ = 0 in the definition of Ag;fQF(%). Thus, since the calculation of
Ag;’pr(%) involves optimization over ¢, we conclude that the state trajectory Figure 5(f)
is no more profitable than the one in Figure 5(e), leaving us with only the trajectories
in Figure 5(d) and (e) as possible candidates for optimality. We summarize the above

discussion in the following theorem.

Theorem 5.3 The optimal value of the problem (GLQF-OVERFLOW) is given by 0¢,; o -

6 The Most Likely Paths

In essence, solving the control problem is equivalent to discovering scenarios of overflow
that maximize the overflow probability over all feasible overflow scenarios. In this section

we summarize these most likely ways of overflow for both policies.

6.1 The GPS most likely paths

The two optimal state trajectories of (GPS-OVERFLOW)) are two generic most likely ways

that queue Q' overflows, under the GPS policy. In particular, we distinguish two cases:

Case 1: Suppose 05pg = inf, Alpg(a)/a holds. Let a* > 0 the optimal solution of this
optimization problem. In this case, the first queue is building up to an O(U) level
while the second queue stays at an o(U) level. The first queue builds up linearly with
rate a*, during a period with duration U/a*. During this period the empirical rates
of the processes A', A? and B, are roughly equal to the optimal solution (%, 73, z3),
respectively, of the optimization problem appearing in the definition of AL, ¢ (a*) (Eq.
(22)). The trajectory in L'-L? space is depicted in Figure 4(a).

Case 2: Suppose 0% ,¢ = inf, AYj<(a)/a holds. Let a* > 0 the optimal solution of this
optimization problem. In this case, both queues are building up to an O(U) level.
The first queue builds up linearly with rate a*, during a period with duration U/a*.
During this period the empirical rates of the processes A', A% and B, are roughly

equal to the optimal solution (z7,z3,z%), respectively, of the optimization problem
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appearing in the definition of A% (a*) (Eq. (23)). The trajectory in L'-L? space is
depicted in Figure 4(b).

It is interesting to reflect at this point on the implications of this result on admission
control for ATM multiplexers operating under the GPS policy. Consider the admission
control mechanism for queue Q' and suppose that the objective of this mechanism is to
keep the overflow probability below a given desirable threshold. A worst-case analysis as
in [PGY3] would conclude that the admission control mechanism has to be designed with
the assumption that the second queue always uses a fraction ¢o of the service capacity.
If instead the results of this paper are used (assuming that a detailed statistical model of
the input traffic streams is available) a statistical multiplexing gain can be realized. In the
overflow mode described in Case 1 above, the second queue consumes less than the fraction
¢o of the total service capacity, implying that more class 1 connections can be allowed
without compromising the quality of service. Even if the overflow mode described in Case
2 above prevails, the overflow probability is explicitly calculated (in an exponential scale)

and can be taken into account in the design of the admission control mechanism.

6.2 The GLQF most likely paths

Considering now the GLQF policy, the two optimal state trajectories for the problem
(GLQF-OVERFLOW) are most likely ways that queue Q' overflows. We distinguish two

cases:

Case 1: Suppose 07, p = inf, Aé*LQF(a)/a holds. Let a* > 0 the optimal solution of
this optimization problem. The first queue builds up linearly with rate a*, during a
period with duration U/a*. During this period the empirical rates of the processes
A', A? and B, are roughly equal to the optimal solution (73,23, %), respectively, of
the optimization problem appearing in the definition of Ag‘LQF(a,*) (Eq. (14)). In
this case the first queue is building up to an O(U) level while the second queue builds
up at a rate of 3, in such a way that the server allocates its entire capacity to the

first queue. The trajectory in L'-L? space is depicted in Figure 5(d).

Case 2: Suppose 07 op = inf, AgL*QF(a)/a holds. Let a* > 0 the optimal solution of
this optimization problem. Again, the first queue builds up linearly with rate a*,
during a period of duration U/a*, and with the empirical rates of the processes A,
A2 and B being roughly equal to the optimal solution (z7, 5, z3), respectively, of the
optimization problem appearing in the definition of AgL*QF(a*) (Eq. (15)). In this
case both queues are building up, the first to an O(U) level and the second to an

O(BU) level. The trajectory in L'-L? space is depicted in Figure 5(e).
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7 A GPS Upper Bound

In this section we present an upper bound on the probability P[L} > U], in the case of

the GPS policy. In particular, we have established that as U — oo we have P[L} > U] <

—OapsU+olU)  where o(U) denotes functions with the property limp_, o LUU) = 0. The

proof is quite involved and uses the special structure of the problem which was revealed by

(&

the corresponding optimal control problem. Thus, the results in Section 5 are critical in

establishing the upper bound.

Due to space limitations we omit the proof, which can be found in [BPT97b]. In proving

the upper bound we distinguished two cases:
Case 1. E[A?] < $E[B], and
Case 2. E[A?] > »E[B],

and established an upper bound for each one of them. The main result is the following

proposition.

Proposition 7.1 (GPS Upper Bound) Assuming that the arrival and service processes
satisfy Assumptions A and C, and under the GPS policy, the steady-state queue length, L',

of queue Q', at an arbitrary time slot satisfies

1
lim — logP[L' > U] < —0%ps. (31)
U—oco U

8 A GLQF Upper Bound

In this section we develop an upper bound on the probability P[L} > U], for the GLQF case.
In particular, we will prove that as U — oo we have P[L} > U] < eiGE’LQFU“(U), where
o(U) denotes functions with the property limy @ = 0. This proof is different from
the corresponding one in the GPS case in that it is independent from the GLQF optimal

control formulation.
Before we proceed into the proof of the upper bound, we derive an alternative expression
for ¢, o which will be essential in the proof. In the next theorem, we will show that the

calculation of ¢,/ o is equivalent to finding the maximum root of a convex function.

In preparation for this result, consider a convex function f(u) with the property f(0) =
0. We define the largest root of f(u) to be the solution of the optimization problem
SUPy:f(u)<o U- If f(-) has negative derivative at u = 0, there are two cases: either f(:)
has a single positive root or it stays below the horizontal axis u = 0, for all v > 0. In the

latter, case we will say that f(-) has a root at u = oc.
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Lemma 8.1 For A*(-) and A(-) being convex duals, it holds

1
inf —A*(a) = 0",

a>0 a

where 6% is the largest root of the equation A(0) = 0.
Proof :

1 1
inf —A*(a) = inf sup —[fa — A(0)]

a>0 a a>0 ¢ a

= inf sup[f — a'A(6)]
a'>0 ¢

= sup 6.
0: A(0)<0

In the second equality above, we have made the substitution o’ := é and in the last one we

have used duality.
[ |

On a notational remark, we will be denoting by AéLQF(-) and AgLQF(-), the convex
duals of Aé*LQF(-) and Ag;’fQF(-), respectively. Notice, that the latter are convex functions.
For Aé*LQ ;(a), convexity is implied by the fact that it is the value function of a convex
optimization problem with a appearing only in the right hand side of the constraints. For

Ag;’fQF(a), the same argument applies when we note the following reformulation

Adiqr(a) = iélf [Ar(21) + Az (22) + Ap(3)]
T1—¢r3=a
zo—(1—¢)x3=Ba
0<p<1

= b (A% () + M) + A ()]
T —Th=a

z2—(z3—24)=Pa
0<z,<z3

In preparation for the following theorem we prove the next monotonicity lemma.

Lemma 8.2 (Monotonicity) Consider a random process {X;; 1 € Z} that satisfies As-
sumption A. Assume X; >0, i € Z. Then for all 0 < 6 we have Ax(0) < Ax(0').

Proof : X; >0, 7 € Z, implies Sffn > 0 which in turn implies

E[easf{n] < E[ee'sf"],



Sec. 8 A GLQF Upper Bound 26

for all < 0'.
|

The above Lemma clearly applies to the arrival and service processes. The next result

is critical in establishing a matching upper bound on the overflow probability.

Theorem 8.3 0, o is the largest positive root of the equation
Acrgr(9) = max(ALop(8), Al or(8)] = 0, (32)
where MGy op(-) is the convex dual of Al qp(-) and is given by
AGrp(6) = Inf[Ax (6 = up) + Az (u) + Ap(=0 + up)], (33)
and A} o (") is the convex dual of A} .(-) and for 0 > 0 satisfies

AgLQF(G) = ig%[Am (0 —uf) + A2 (u) + max(Ag(—u), Ag(—0 + up))]. (34)

Proof : Let us first calculate AéLQF(-) and AgLQF(-) by using convex duality. We have

AéLQF(a) =sup[fa — AgLQF(a)]

=sup  sup [Oa — A%y (21) — ANy2(22) — Ag(x3)]
22<B (01 —02)

=sup  sup  [0(z1 —w3) = Al (21) — Ay (22) — Ag(3)]
22<B(rr —3)

= sup  [0(zy —23) — Al (21) — Ao (22) — A(zs)]
z2<B(x1—2x3)
= inf sup [0(zy —z3) — Al (21) — Ao (22) — A(zs)

u<0zy,25,23

—u(Bry — Brz — x2)]

— inf[A 0 (0 = up) + Age(u) + Ap(=0 + up)].

Similarly,

AgLQF(a) = suplfa — AgfoF(a)}

= sup sup [Oa — Nyi(21) — A2 (z2) — Ap(23)]
a z1—dr3=a
22— (1-¢)zs=B(w1—dx3)
0<g<1
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=inf sup [0(z1 — px3) — A1 (1) — Ao (22) — Ap(23)
0<4<1

+u(wy — Br1 + (Bp + ¢ — 1)13)]

= inf[A 01 (0 —uB) + Ap2(u) + sup Ap(—0¢+ (B¢ + ¢ — 1)u)]
u 0<p<1

= inf[A 41 (0 — uB) + A2 (u) + max(Ap(—u), Ap(—0 + up))]

= il;f(;[AAl (0 —uf) + A2 (u) + max(Ap(—u), Ap(—0 + upf))].
In the fifth equality above, we have used the monotonicity of Ag(-) (see Lemma 8.2), and
the fact that the argument —6¢ + (8¢ + ¢ — 1)u is linear in ¢, thus, taking its maximum

value at either ¢ = 0 or ¢ = 1. For the sixth equality above, notice that because Ag(-) is

non-decreasing it holds

A1 (0 —upf) + Aye(u) + max(Ap(—u), Ap(—0 + upf)) =
Agi(0 —uf) + Ay2(u) + Ag(—u) ifu < 5
A (0 —up) +Ap2(u) + Ag(—0 +up) ifu> %,

+‘Q:
=

(35)

since at the upper branch —u > —6 4+ uf and at the lower branch —u < —6 4+ uf. Differ-

entiating the above expression at u = 0, and for § > 0, we obtain

:/BAAl (0) + i\AZ (0) — AB(Ol <0,
<0 @

<0

which implies (by convexity) that the infimum over unrestricted u has to be the same with

the infimum over u > 0.

Using the result of Lemma 8.1, p; 2 inf, éAg‘LQF(a,) is the largest positive root of
AéLQF(H) = 0 (it is not hard to verify that this equation has a positive, possibly, infinite
root). Similarly, po 2 inf, %AgEQF(a) is the largest positive root of AgLQF(H) = 0. By
Equation (13), OCrLor = min(p1, p2). This implies that 0Gror is the largest positive root
of the equation max[AéLQF(G), AgLQF(H)] = 0.

|

We next prove the upper bound for the overflow probability.

Proposition 8.4 (GLQF Upper Bound) Under the GLQF policy, assuming that the

arrival and service processes satisfy Assumptions A and C, the steady-state queue length,
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L', of queue Q', at an arbitrary time slot satisfies

.1 .
lim logP[L' > U] < —0&,0p- (36)

U—oo

Proof : Without loss of generality we derive an upper bound for P[L} > U]. We will
restrict ourselves to sample paths with L[l) > 0 since the remaining sample paths, with
L} =0, do not contribute to the probability P[L§ > U].

Consider a busy period for the system that starts at some time —n < 0 (L', = L%, = 0),
and has not ended until time 0. Such a time —n exists due to the stability condition (9).
Note that since the system is busy in the interval [—n, 0], the server works at capacity and
therefore serves B; customers at slot i, for ¢ € [—n,0]. We will partition the set of sample
paths, with L} > 0, in three subsets Q1, Q5 and Q3. The first subset, (1, contains all sample

paths at which only class 1 customers get serviced in the interval [—n,0]. As a consequence,
1 Al B 2 A? 1 2
Loy =80 k1 =500 k1 L2 =87, k1, and [BL; > L7, VE € [0,n],

which implies

2

and B(SA -8B )>s54

—n,—1 —n,—1

1 Al B
LO - an,fl - an,flﬂ n,—1-

Thus

P[Ly > U and Q]
<P[In > 0 s.t. Sé;ﬁl - 5B > U and ,B(Sf;’,l -8B > 54 ]

—n,—1 —n,—1 —n,—1

=P|  max N Sy LY B oy (37)
{TLZU: /B(an,flisén,—l)zsi‘n,—l}

The second subset, (29, contains sample paths at which class 1 customers do not receive
the entire capacity, and BL} < L2. That is, there exists a ¢ € [0,1] such that class 1

customers receive only a ¢ fraction of the total capacity (qﬁan’fl). Then we have

P[L} > U and Q] <
<PEn>00<¢<1, st 8 | —¢S% | >Uand
1 2
BSA, =¢8P, ) <8t —(1-¢)S8, ]

=P max (84, 1 —¢S%, ) > UL (38)
{n>0, 0<¢<1: B(SA), =SB, )<SAL  —(1-¢)SE, .} ’

Finally, the third subset, 23 contains sample paths at which class 1 customers do not
receive the entire capacity, and ﬁL(l) > L%. Then there exists k& € [0,n], such that the
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interval [k, 0] is the maximal interval that only class 1 customers get serviced. That is,

BLY, > L%, i€ [0,k—1], and ﬂL{k < L%k. Since class 1 customers do not receive the

71‘7
entire capacity, there exists 0 < ¢ < 1 such that L{k = Sf; k1~ ¢S]fn _g_1- Since
ﬂLEk < L%k, we have

BSA, o —dSE, )< SN - (1—¢)SE, (39)

Now, due to the way we defined k£ we have Llﬂ- = L{k + Sf‘;’fifl — S]fkﬁifl, i€ [0,k—1],
and the inequality ﬁLlZ > L%i becomes

1 1 2 2
B(SA, k1 — PSP, o+ ka,fifl -85 i) > an,fkq —(1=¢)S%, 4 1+ Sék,ﬂela

T
which by (39) implies

5(562,7171 - S?k,fifl) > Sfic,fiflv i €0,k —1].
Thus,

P[L[l] > U and Q3] <
<PEn>0,0<k<n0<¢<1, st 5% , | oS8, . +5% | S8 _ >U
1 2
and B(S%, 1 — ST, k) S SN i — (L 9)ST,
and /B(Séllc,fl -85 ) > Si‘}i,fl]

<P| (% k1 =T ki + 8% 1= S5 ) > UL (40)

max
n>0,0<k<n,0<¢<1
1 2
ﬂ(si‘n,fk'fl7¢S§n,fk71)§5én,fk717(17¢)S§n,7k71
Al B A?
ﬂ(sfk,flisfk,fl)zsfk,fl

Let us now define

>

1
max (Sén,fl - S?n,fl)a

L{
GLQF a 5 42
{n>0: ﬂ(57n171757n,71)257n,71}

11 A Al B
LGLQF = . max ) (an,q - ¢an,71)7
{n>0, 0<¢<1: B(SA, —¢SB, )<  —(1-¢)S”, .}
and
ir A Al B Al B
L = max S° . =¢S°, . +ST, =87,
GLQF n>0.0<hom0<p<l ( n,—k—1 ¢ n,—k—1 k,—1 k, 1)
Al A2
’B(an,fk'fl7¢S§n,fk71)ssfn,fk717(17‘1))5?11,71('71

Al B A2
B(S—k,—lfs—k,—l)zs—k,—l
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which after bringing the constraints in the objective function become

2
Lhpgr = max inf[(1+uB)S%, 4 —uS%, i+ (=1 pu)S%, ), (41)

Lthor = max inf[(1—up)S™, i +us™, i+ (-6 +ufp —utug)s®, ] (42)

0<g<1

and

A
Liflor = max {ullnf [(1—wiB)S, oy +uiS™ 4+ (—p+wf—ur +
0<k<n
0<¢<1

u$)S” Pk + 1nf [(1 + “25)562,71 - 1‘2562,71 +(~1 - 1L2ﬂ)SBk,1]}' (43)

Next, we will first upper bound the moment generating functions of Lé LOF LgLQ p and

LgLIQF For LéLQF and for 6 > 0 we have

E[egL{’,‘LQF]
<Y Elexp{0 inf[(1+ uf)S4, _ —uSt, |+ (~1—pu)SE, 11} ]
n>0
<> inf Blexp{0[(1 +up)S%, | —uS, |+ (-1 fu)S”, ]}]
n>0 —
< Z (infy>0[A 41 (04+0uB)+A 4o (—ub)+Ap(—0—ufb)]+e1)
n>0
K'(0,e1)  if ALror(f) <O. (44)

In the third inequality above we have used the LDP for the arrival and service processes.
In the last inequality above, when the exponent is negative (that is, AéLQF(H) < 0 and €
is sufficiently small), the infinite geometric series converges to a constant K'(6,¢;). Also,
in the last inequality, we have made the substitution u := —fu in the expression in the

exponent and used the definition of AGLQF(H) (Eq. (33)).

Similarly, for LGLQF and for # > 0 we have

E[QHLEILQF}

SZEexp{G max_inf[(1 — uB)S4 1+uS Gt (P +ubd—u+up)S n,l]}]

0<p<1lu>0
n>0 ¢

< Z 1nf E| exp{@ max [(1 —uB)St |+ qun A (pF+uBd — u+ugp)SP 11t
n>0 -
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< Z inf < ([A 41 (0—0uB)+A 42 (ub)+Ap(—0u)|+ey) + en([AAl(G0uﬁ)+AA2(u6)+AB(0+0uﬁ)}+5’2’)>

u>0
n>0 —
<2Z n(infy>o[A 41 (0—0uB)+A 42 (uf)+max(Ap(—0u),Ap(—0+0uB))]+e2)
n>0
<K'(0,¢e) if A op(0) <0 (45)
> ) ) GLQF :

In the third inequality above, the expression to be maximized over ¢ is linear, thus, the
maximum is achieved at either ¢ = 0 or ¢ = 1, which implies that we can upper bound it
by the sum of the terms for ¢ =0 and ¢ = 1.

Also, for LgLIQF and for 8 > 0 we have
E[ ngLIQF]

§Z Z E[exp{@ max inf [(1 — u18)S%, . 1+u137n p1 T (B —

0<p<1 1y >0
n>00<k<n se<tuz

uy + u)SP S 1nf [(1 + U2I3)Sé;€’,1 - UQSé;’,1 +(—1— UQﬁ)SBkyl]} ]

< o J—
_nz;O(Kkz; ul}n2f>0E[exp{9 rggx [(1 u1ﬁ) —n,—k— 1+u15’ n ke L+ (¢ + ui B

uy + u1)S? k1] FO[(1 + u/3)S4 k - upSY k + (-1 TLQﬂ)SBk’l]} ]

< f n—k)(A 41 (0—0u18)+A 42 (u10)+A g (—0u1)+ey)
>, 2, inf [F +
n>00<k<n

e(nfk)(AAl (070u1B)+AA2 (U19)+AB(79+9ulﬂ)+6’3’) ek(AAl (9+9ugﬂ)+AA2 (7U29)+AB(7979U42ﬂ)+6’3”)

<22 Z Y(ATT(0)+és) k(AT (0)+63)

n>00<k<n
<22n€ 0)+é3) —I—2Zn€ +é3
n>0 n>0
<K'"(0,€3), if maX(AéLQF(G)a AgLQF(G)) <0. (46)

In the third inequality above we have used the LDP for arrival and service processes, as well
as Assumption C. Concerning the maximization over ¢, we have used the same argument
as in Eq. (45). In the fifth inequality above, since the exponent is linear in &, the maximum
over k is either at K = 0 or at £k = n. Thus, we bound the term by the sum of the terms for
k =0 and k = n. Finally, for the last inequality, both series converge to a constant if both

their exponents are negative, which requires max(AéLQF(H), AgLQF(G)) <0.

To summarize (44), (45) and (46), the moment generating functions of LéLQF, LgLQF
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and Lg,{QF are upper bounded by some constant K (6, €1, €9, €3) if max(AéLQF(H), AgLQF(G))
< 0, where €1, €9, €3 > 0 are sufficiently small. We can now apply the Markov inequality to
obtain (using Egs. (37), (38) and (40))

P[L} > U]
<P[L} > U and Case 1] + P[Ly > U and Case 2] + P[L} > U and Case 3]

S<E[60AI(6)]+E[60A”(6)]_l_E[eHA”I(H)])eHU

<3K (0, €1, €3,€e3)e U if max(A¢ror(0), Adror(9)) < 0.

Taking the limit as U — oo and minimizing the upper bound with respect to 8 > 0, in

order to obtain the tightest bound, we have

1
lim — log P[L) > U] < — sup 0.
U—oco U {6>0: max(AI(0),A11(0))<0}

The right hand side of the above is equal to *GE‘LQF by Theorem 8.3.

9 Main Results

In this section we gather our main results on the performance of multiclass multiplexers.

9.1 The GPS main results

We first combine Propositions 4.2 and 7.1 and summarize our main results for the GPS

policy. As a corollary we obtain results for priority policies.

Theorem 9.1 (GPS Main) Under the GPS policy, assuming that the arrival and service
processes satisfy Assumptions A, B, and C the steady-state queue length, L', of queue Q",

at an arbitrary time slot satisfies

1
lim - logP[L' > U]l = 0% ps, (47)

U—oo

where 0F,pg 15 given by

1 1
0* _ . . f—AI* D i f_AII* . 4
Gps — min 320 p GPS(a)aégo p aps(a)l, (48)
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and the functions ALpg(-) and ALjg() are defined as follows

% A . * * *
Nips(@) 2 inf [ () + A + A ()], (49)
T2<¢2T3
and
% A . * * *
M@ 2 int  [A() + A () + A () (50)
T1—pre3=a
T2>P213

An interesting observation is that strict priority policies are a special case of the GPS
policy. Class 1 customers have higher priority when ¢; = 1 and lower priority when ¢, = 0.
We can therefore obtain the performance of these two priority policies as a by-product of our
analysis. Note that the result for the policy that assigns higher priority to class 1 customers,
matches the FCFS single class result (see [Kel91, GW94, BPT97a]) since under this policy,
clags 1 customers are oblivious of class 2 customers. We summarize the performance of
priority policies in the next corollary. The discussion of Section 6.1 can be easily adapted
to the cases ¢1 = 1 and ¢; = 0 to characterize the most likely ways that lead to overflow

under priority policies.

Corollary 9.2 (Priority policies) Under strict priority policy for class 1 customers (P ),
assuming that the arrival and service processes satisfy Assumptions A, B, and C the steady-

state queue length, L', of queue Q', at an arbitrary time slot satisfies

: 1 1 *
Ulgréo Elog P[L' > U] = —6p, (51)
where 0%, is given by
9P1 = ;gg EAP1 ((],)’ (52)
and where
Ajp(@) 2 inf (A% (1) + A ()] (53)
1—T3=a

Under strict priority policy for class 2 customers (Py), the steady-state queue length, L', of

queue Q1, at an arbitrary time slot satisfies

1
lim - log P[L' > U] = —05,, (54)

U—oo
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where 0, is given by

HPQ = ;gg EAPQ ((],)’ (55)
and where
% A . * * *
(@2 b N () + A () + A (56)
ro<T3

Proof : For policy P; apply Theorem 9.1 with ¢y = 1. For such ¢1, it is easy to verify that
ALpo(a) > Az (a), for all a. Thus, we define A}, (a) to be equal to A% (a) with ¢ set
to 1.

For policy P, apply Theorem 9.1 with ¢; = 0. Application of ¢ = 0 to ALipg(a) yields

Afpsla) = inf [N (21) + Al (w2) + Ajs(aa)] (57)
T2<T3

Also, application of ¢1 =0 to Alj¢(a) yields

Mps(a) = inf [N (1) + Ao () + Ny (23)] (58)

To2>T3

The functions A%, (z2) and A% (z3) are non-negative, convex, and achieve their minimum
value, which is equal to 0, at zo = E[A2] and z3 = E[By], respectively. Since E[By] > E[AZ],
the inequality zo > x3 implies that either zo > E[A2] or z3 < E[By]. If the former is the
case, we can decrease 9 and reduce the cost, as long 29 > x3 holds. Also, if z3 < E[By] is
the case, we can increase =3 and reduce the cost, as long zo > =3 holds. Thus, at optimality
29 = x3 in (58). But, the region characterized by z; = a and z9 = x3 is included in the
region defined by the constraints in the optimization problem in (57). Hence, for all a,
and when ¢1 = 0, ALpg(a) < Aljg(a). Therefore, we define A%, (a) to be equal to the
expression in (57).

|

As the results of Theorem 9.1 and Corollary 9.2 indicate, the calculation of the overflow
probabilities involves the solution of an optimization problem. We will next show that
because of the special structure that these problems exhibit, this is equivalent to finding
the maximum root of a convex function. Such a task might be easier to perform in some
cases, analytically or computationally. This equivalence relies mainly on Lemma 8.1. Hence,
using duality, we express 07,p¢ as the largest root of a convex function. The result is given

in the next theorem, the proof of which is omitted due to space limitations; it can be found
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in [BPTY7h].
Theorem 9.3 0(,,¢ is the largest positive root of the equation

Aaps(0) 2 A (8) + Jnf [Age(6 = u) + Ap(=0 + gou)] = 0. (59)

Remark : Equation (59) has a positive, possibly infinite, root. To establish that, notice
first that Agps(0) is a convex function of §. This can be seen when we write it as the value
function of a convex optimization problem with 6 appearing only in the right hand side of

the constraints, i.e.,

Agps(0) = Ay (0) + lgg [Ag2(z — u) + Ap(—2z + ¢ou)].
0Zu<o

Observe now that

Agps(0) < Agi(0) + Aa2(0) + Ap(—0),

and that both sides of the above inequality are 0 at # = 0. This implies that their derivatives
at 6 = 0 satisfy
Agps(0) < A (0) + Ay (0) — Ag(0) <0,

where the last inequality follows from the stability condition (9). The convexity of Agps(-)

is sufficient to guarantee the existence of a positive, possible infinite, root.

Again, as it was the case with Theorem 9.1, the result of Theorem 9.3 can be specialized

to the case of priority policies.

Corollary 9.4 0%, is the largest positive root of the equation
A
Ap1(0) = A (0) + Ag(—6) =0. (60)
Also, 0}, is the largest positive root of the equation

Apa(6) 2 Ay (0) + (A2 (0 —u)+ Ap(—0+u)] = 0. (61)

inf
0<u<0
We conclude this subsection noting that, by symmetry, all the results obtained here can
be easily adapted (it suffices to substitute everywhere 1 := 2 and 2 := 1) to estimate the

overflow probability of the second queue and characterize the most likely ways that it builds

up.
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9.2 The GLQF main results

Combining Propositions 4.1 and 8.4 we obtain the following main GLQF theorem. An exact

characterization of the most likely ways that lead to overflow was discussed in Section 6.2.

Theorem 9.5 (GLQF Main) Under the GLQF policy, assuming that the arrival and
service processes satisfy Assumptions A, B, and C, the steady-state queue length, L', of

queue Q', at an arbitrary time slot satisfies

Uh_{réo T logP[L" > U] = —06.0p (62)
where O¢, o 1s given by
Otiror = min| inf AL op(a), inf ~Adfom(a) (63)
Q a>0a Q "a>0 a Q ’

and the functions Aé*LQF(-) and AgL*QF(-) are defined as follows

A . * * *
it [Nlm) + Al e) + A (64)
z2<B(w1—13)

Aé‘*LQF(a)

and

2

AGLqr(a) inf  [AQ (1) + Ay (22) + A (23)]. (65)

&1 —pr3=a
a:gf(é;i)ff:ﬁa

It should be noted that the performance of strict priority policies, which is characterized
by Corollary 9.2, can be also obtained as a corollary of the above theorem. We obtain the
performance of strict priority to class 2 (P,) when # = 0, and the performance of strict
priority to class 1 (P;) when 8 = oco. It is not hard to verify that the result is identical to
Corollary 9.2. The above Theorem indicates that the calculation of the overflow probabilities
involves the solution of a convex optimization problem. In Section 8, and for the purposes
of proving Proposition 8.4, we proved in Theorem 8.3 that the exponent of the overflow
probability can also be obtained as the maximum root of a convex function. This may be

easier to do in some cases. Here, we restate this latter result, simplifying the expression for

Acror(-).
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Theorem 9.6 GELQF 1s the largest positive root of the equation

Acror(0) = max{A 41 (0) + Ap(—0), inf [A4(0—uB)+ Ay2(u)+ Ap(—u)l} =0.

0
0<u<typ

(66)

Proof : Due to Theorem 8.3 it suffices to prove that the expression in (66) is equal to
max[AéLQF(O),AgLQF(H)]. Recall the definitions of AéLQF(O) in (33) and of AgLQF(H)
in (34). Recall also the expression in (35) for the objective function of the optimization
problem corresponding to AgLQp(G). Let now u* be the optimal solution of the optimization

problem in the definition of AgLQF(H). We distinguish two cases:

Case 1: where u* > %. Then, notice that u* is also the minimizer of the objective
function in the definition of AéLQp(G). Thus, due to convexity, the constraint u < 0
is tight for the problem corresponding to AéLQF(H), and

maX(Ag}LQF(H)a AgLQF(G)) = A (0) + Ap(-0), if u* > % (67)

But,

inf  [A (0 —uf)+A 2 (u) + Ap(—u)]
0
Osustip

<A (0 —uf) + Aye(u) + Ap(—u)] 4

[ ar (1) + Aaa(r) + Ass(— L)
= [AAI (9 — Uﬁ) + AA2 (U) + AB(*H + U,@)] 0

< [A 41 (0 = uB) + Ao (u) + Ap(=0 + uf)]u=o
— A (0) + Ap(—0).

In the second inequality above we have used the assumption u* > % and convexity.

Therefore, combining it with (67) we obtain

maX(AéLQF(G)v AgLQF(H)) = max{A 41 (0) + Ap(-0),

inf  [Ag1(0 —uB) + Ag2(u) + Ap(—u)] } = Agror(9) if u* > # (68)

Case 2: where 0 <u* < %. To conclude the proof we need to show that max(AéLQF(H),

AgLQF(H)) is not AéLQF(H) when the optimal solution, of the optimization problem
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appearing in the definition of AéLQF(H), is some 4 < 0. Let us, indeed, assume that

this optimal solution is some @ < 0. Then, for all u € [0, %) (hence for u*) we have

AéLQF(e) =[Aq1 (0 —aB) + Ay2(a) + Ap(—0 + ap)]

< [Agi(0 —uB) + Agz(u) + Ap(—0 + upB)]
< (A (0 = uB) + A ga(w) + A(—u)),
where in the last inequality we have used the fact that u < % which implies (see

also (35)) Ap(—u) > Ap(—0 + up).

Therefore, for 0 < u* < % also, we have

maX(Aé‘LQF(G)a AgLQF(H)) = max{A 41 (0) + Ap(-0),

infﬂ [AAI (9 — uﬁ) + AAQ(U) + AB(—U)] } = AGLQF‘(H)-
0<u<iig

The results of this Theorem can be also specialized to the case of priority policies, to
obtain the characterization of Corollary 9.4.

We conclude this subsection, noting that, by symmetry, all the results obtained here
can be easily adapted (it suffices to substitute everywhere 1 := 2, 2 := 1, and g = %) to
estimate the overflow probability of the second queue and characterize the most likely ways
that it builds up.

10 A Comparison

In this section we compare the overflow probabilities achieved by the GPS and the GLQF
policy.

Let 7 be an arbitrary work-conserving policy used to allocate the capacity of the server
to the two queues Q' and @2, and let II the set of all work-conserving policies 7. Let L'
and L? denote the queue lengths of Q' and Q?, respectively, at an arbitrary time slot, when

the system operates under 7. Let us now define 6™ the vector (67, 607) where
T i 4 logP[L' >U] and 6] = lim 1 log P[L% > U] (69)
! U—oo U 2 U—oo U ’

The GPS policy is a parametric policy with performance depending on the parameter ¢;.
To make this dependence explicit we will be using the notation GPS(¢1). Also, the GLQF
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policy is a parametric policy with performance depending on the parameter 3. For the
same reason we will be using the notation GLQF(/3). Special cases of a work-conserving
policy 7 are the GPS(¢1) policy, the GLQF(3) policy, the strict priority to class 1 policy
(Py policy), and the strict priority to class 2 policy (P, policy). Using Theorems 9.1, 9.5,
and Corollary 9.2 one can readily obtain the corresponding 6™ for the policies GPS(¢1),
GLQF(f), P, and P,.

It is intuitively obvious that

o = 07, min 63 d 67 = (mind] 03).

ot e G OT e o)
In Figure 6 we plot #GF5(91) as ¢, varies in [0,1], and OGLRE(B) ag B varies in [0, 00).
For simplicity the calculations were performed with the arrival and service processes being
Bernoulli (we say that a process {X;; 7 € Z} is Bernoulli with parameter p, denoted by
X ~Ber(p), when X; are i.i.d. and X; = 1 with probability p and X; = 0 with probability
1 — p). Also, for the calculations we used the expressions for §f,,¢ and OELQF given in
Theorems 9.3 and 9.6, respectively, because they were more efficient to perform numerically
g — pGPS(1)

than the equivalent expressions in Theorems 9.1 and Thm. 9.5. Note that
PGLQF () a1 d that §F2 — GPS(0) — gGLQF(0).

Figure 6 indicates that the GLQF curve dominates the GPS curve, i.e., the GLQF
policy achieves smaller overflow probabilities than the GPS policy. The question that arises
is whether this depends on the particular distributions and parameters chosen in the figure
or is a general property. In the sequel we show that the latter is the case, that is, for all
arrival and service processes that our analysis holds (processes satisfying Assumptions A,
B, and C) the GLQF curve dominates the GPS curve. The intuition behind this result is
that the GLQF policy, which adaptively depends on the current queue lengths, allocates
capacity to the queue that builds up, thus, achieving smaller overflow probabilities than the
GPS policy which is static. This suggests than when one has to deal with delay insensitive

traffic (i.e., when there are no delay constraints) GLQF is more suitable than GPS.
Let us first formally define the term the GLQF curve dominates the GPS curve.

Definition 10.1
We say that the GLQF curve dominates the GPS curve when there does not exist a pair of
1 €10,1] and B € [0,00) satisfying GIGPS(%) > GIGLQF(’B) and GQGPS(d)l) > GQGLQF(’B).

In order to establish that the GLQF curve dominates the GPS curve, we need to prove

the three lemmata that follow.
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— GPS

oF=

0>

Figure 6: The performance §773(91) of the GPS(¢;) policy as ¢; varies in [0, 1],
and the performance §GF@F(8) of the GLQF(B) policy as 3 varies in [0, 00), when
Al ~Ber(0.3), A% ~Ber(0.2) and B ~Ber(0.9).

Lemma 10.2 If ¢; < ¢} we have

QGPS(¢1) < glGPS(cb’l)

1 9GP5(¢1) > 92GP5(¢’1)_

and o

Proof : We only prove the first relation. The second can be obtained by a symmetrical
argument. We use the result of Theorem 9.3. Note that ¢; < ¢}, implies ¢, = (1 — ¢}) <
¢ = (1 — ¢1). Thus, by Lemma 8.2, for all u,0 > 0 we have that Ag(—0 + ¢pou) >
Ap(—0 + ¢yu), which by Thm. 9.3 implies Agpg(g,)(6) > AGPS(%)(G) for all §. Therefore,

*

by convexity, for 0, p¢, as it is defined in Thm. 9.3, we have GEPS(%) < 9GPS(¢’)'
1

A similar property is proven for the GLQF policy.
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Lemma 10.3 If 3 < 3 we have

gOIRF(E) L gGIQF(E) g (GLAF() 5 (GLAF()

Proof: Again we only prove the first relation. The second can be obtained by a symmetrical
argument. We use the optimal control formulation of Section 5.2. We argued there that
optimal trajectories have the form of Figure 5(d) and (e), with cost inf, %Aé*LQF(a) and
inf, %AgEQF(a), respectively. Let us fix § and consider how the cost is affected by using
the policy with 8’ = 8 + ¢, for small € > 0.

Consider first trajectories of the form in Figure 5(e). Note that we can rewrite
ALl (ﬁ)(a) as

GLQF
AGrars)(e) = inf  [A%(21) + Al (22) + Ag(23)].
T1—¢pr3=a
r1t+x2—23=0F(1+a)
0<p<1

We shall show Ag;’fQF(ﬂ,)(a) > Ag;fQF(B)(a’) for all @ > 0. Assume the contrary. Con-
sider the optimal solution of the problem corresponding to 3 which satisfies the feasibility

constraints

) — ¢k =a
i+ b — 2y =1+ a)
0<¢' <1

We distinguish two cases: ¢/ > 0 and ¢/ = 0. We provide an argument only for the first
case. The second case can be handled similarly. Since §,a > 0, at least one of the following
holds: z} > E[A}] or 2}, > E[A2] or 2}, < E[By]. Depending on which one is the case we can
decrease x|, or x4, or increase 1%, respectively, reducing the cost, until z} +24 — 25 = 5(1+a).
Thus, we have constructed a feasible solution of the problem corresponding to g with
smaller cost than AgL*QF(ﬁ,)(a). This contradicts our initial assumption. We conclude that
by increasing 3 to ' we also increase the optimal cost of trajectories having the form in
Figure 5(e).

If now, an optimal trajectory has the form in Figure 5(d), then it will still be the optimal,
by convexity, when £ is increased to 3'. Thus, in this case, the optimal cost does not change.

We summarize by considering how the cost is affected as 3 is increased from 0 to oc.
At 8 = 0, possible optimal trajectories have the form of Figure 5(e). There is a threshold
value 3 such that for all 3 < (8 optimal trajectories have the form of Figure 5(e) with values

increasing as 8 increases from 0 to . For all 8 > 8 optimal trajectories have the form of
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Figure 5(d) with slope 8 and do not change as 8 increases from 3 to oc.
|

We next prove a sufficient condition for the GLQF curve dominating the GPS curve.

Lemma 10.4 If for all B € [0,00) there exists ¢y € [0,1) such that

gOTSO) £ gGLQFW)

goTS@1) £ GGLQF()

)

then the GLQF curve dominates the GPS curve.

Proof : We use contradiction. Assume that the condition given in the statement holds but
the GLQF curve does not dominate the GPS curve. Then, by definition, there exist 4’ and
@) such that

GLQF (')

> 65

gOPS9h)

S gOLRFE) g gGTI@)

By Lemma 10.2 all points with ¢; < ¢} have ngs(qm > GGPS(d)Il) > GQGLQF(’[;/). Also, by

2
the same lemma, all points with ¢; > ¢} have H?PS(d)l) > 9?P5(¢1) > OSLQF(B). This
contradicts our initial assumption.
|

We now have all the necessary tools to prove that the GLQF curve dominates the GPS

curve.

Theorem 10.5 Assuming that the arrival and service processes satisfy Assumptions A, C,
and B, the GLQF curve dominates the GPS curve.

Proof : Fix an arbitrary 8. We will prove that there exists ¢; satisfying the condition
of Lemma 10.4. It suffices to prove that for both queues and such ¢, overflow with the
GLQF(p) policy implies overflow with the GPS(¢1) policy. Then, the overflow probability
of GLQF(f) is a lower bound on the corresponding probability of GPS(¢1), i.e., it holds

> U] < P[L

P[L¢ GPS(o1)

GLQF(B) > U, j=12,

which implies

9?135(4251) < HfLQF(ﬂ) and

95P5(¢1) < GQGLQF(ﬁ)‘
Since we have established that both in the GPS and the GLQF case, the overflow
probability is equal to the probability of overflowing according to one out of two scenarios,

it suffices to establish the above only for these scenarios. In particular, we distinguish
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the following cases depending on the possible modes of overflow for GLQF (), which are

described in Section 6.2.

Case 1: Mode 1 for overflow of Q' and mode 1 for overflow of Q2.
Case 2: Mode 1 for overflow of Q' and mode 2 for overflow of Q2.
Case 3: Mode 2 for overflow of Q' and mode 1 for overflow of Q2.

Case 4: Mode 2 for overflow of Q' and mode 2 for overflow of Q2.

In Case 1 and 2, we have

Ir1 — T3 = a,

Z2 S ,6(1,

where z;, 7 = 1,2,3, a, solve the optimization problem corresponding to the overflow of
Q' in mode 1. Then, since £; — ¢1x3 > 1 — 3 = a Yoy, it is clear that for all ¢; the GPS
policy will overflow Q'. If we are in Case 1, then also for all ¢; the GPS policy will overflow

Q?. If we are in Case 2, we have

Y2 — ¢y3 = a,
y1— (1 — P)ys = a/pB,
0<¢<1,

where y;, 7 =1,2,3, a, ¢, solve the optimization problem corresponding to the overflow of
@? in mode 2. Then, the GPS policy with ¢; > 1 — ¢ will overflow Q2.

Consider now Cases 3 and 4. We have

T1 — ¢T3 = a,
$2—(1—¢)$3:a,6,
0<¢<1,

where z;, 7 =1,2,3, a, ¢, solve the optimization problem corresponding to the overflow of
Q' in mode 2. Then the GPS policy with ¢; < ¢ will overflow Q?. In Case 3, for reasons
explained in the previous paragraph, the GPS policy will overflow Q? for all ¢;. If, finally,

we are in Case 4, we have

yo — (1 — ¢ )yz =d,
n— Pys =d' /B,
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0<¢ <1,

where y;, j =1,2,3, d/,¢', solve the optimization problem corresponding to the overflow
of Q? in mode 2. Then the GPS policy with ¢; > ¢’ will overflow Q?. To show that there
is at least one ¢; that overflows both queues we need to show ¢ = ¢'. To see that notice
that (by making the substitution a’ := (a’)

1
M f_ T f A* A*‘ A* —
e yr(lilqlﬁ,)ygza,[ () + Mya(y2) + Ag(ys)]
y1—¢'ys=a'/p
0<¢'<1

inf - inf (A% (y1) + Al (y2) + A (ys)]
— inf - in .
B o a y—¢ys=d Attt A2¥2 BY3

y2—(1—¢' )yz=pd’
0<¢'<1
The right hand side is exactly the problem corresponding to the overflow of Q' in mode 2.
|

11 Conclusions

In this paper we considered a multiclass multiplexer, with segregated buffers for each ser-
vice class. Under the GPS and the GLQF policy, we have obtained the asymptotic (as the
buffer size goes to infinity) tail of the overflow probability for each buffer. In the standard
large deviations methodology we provided a lower and matching (up to first degree of the
exponent) upper bound on the buffer overflow probabilities. We formulated the problem
of calculating the maximum overflow probability (over all scenarios that lead to overflow)
as an optimal control problem. The specifics of the policies enter in the formulation of the
control problem only through the system dynamics. Therefore, this approach can poten-
tially be used to obtain the performance of other scheduling policies as well. The optimal
control formulation provides particular insight into the problem, as it yields an explicit and
detailed characterization of the most likely modes of overflow. We have addressed the case

of multiplexing two streams. The general case of NV streams remains an open problem.
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